
Supplementary of
MegaSynth: Scaling Up 3D Scene Reconstruction with Synthesized Data

1. MegaSynth Details
In this section, we include more details of our MegaSynth
generation method. We introduce the details according to the
sections in the main paper, i.e. scene floor plan, geometry
and texture, and lighting.

1.1. Scene Floor Plan
We define the parameters of the scene size and object box
in Table 1 and Table 2, including the categories, types, size
ranges, height ranges, and probabilities. These object boxes
are placed randomly in the scene, except for some categories,
i.e. on-ground small box, on-roof box, and on-wall box,
which have pre-defined location priors.

Scene parameters Size range [17.0, 30.0]
Height range [10.0, 15.0]

Object box parameters # Categories 7

Large object box Size range [4.0, 8.0]
Number range [2, 5]

Small object box Size range [2.0, 4.0]
Number range [4, 8]

Type 1 On-ground
Prob. 1 0.5

Height range 1 [2.0, 6.0]
Type 2 Atop large box
Prob. 2 0.5

Height range 2 [2.0, 4.0]

On-roof object box Size range [2.0, 5.0]
Number range [2, 4]

Type 1 Thin
Prob. 1 0.5

Height range 1 [0.5, 1.5]
Type 2 Thick
Prob. 2 0.5

Height range 2 [2, 4]

Table 1. Scene floor plan details part 1.

1.2. Geometry and Texture.
We include the details of object geometry in Table 3. In
detail, the probability of using cube, sphere, cylinder and

On-wall object box Size range [2.0, 5.0]
Number range [3, 6]

Type 1 Thin
Prob. 1 0.5

Height range 1 [0.5, 1.5]
Type 2 Thick
Prob. 2 0.5

Height range 2 [2, 4]

Wire-frame box Size range [3.0, 6.0]
Number range [1, 3]
Height range [3.0, 6.0]

Prob. 0.8

Thin stick box Length range [3.4, 18]
Type 1 On-wall
Prob. 1 1.0
Size 1 [0.1, 0.6]

Number 1 [5, 16]
Type 2 In-space
Prob. 2 0.5
Size 2 [0.8, 1.8]

Number 2 [2, 6]

Axis-aligned box Size range [2.0, 5.0]
Number range [1, 2]

Prob. 0.7
Height range [0.2, 1.0]

Table 2. Scene floor plan details part 2.

cone primitives are all 0.25 for large, small, on-wall, on-roof
and wireframe object. For thin stick and axis-aligned objects,
we only use cubes and cylinders. Beside, fro wireframe
objects, we use cube, cylinder and torus, where torus has
genus, increasing the geometry and topological complexity
an diversity. We apply the height field augmentations to
all shape primitives except for thin sticks and axis-aligned
objects.

We include the details of object textures in Table 4. After
we randomly select textures and materials for all instantiated
geometry primitives, we randomize the materials to improve
complexity and diversity. We also have special deigns for
materials of axis-aligned objects. We include details in Ta-
ble 5.

1



Large object Number of shape primitives [4, 5, 6, 7, 8, 9]
Prob. of Number of shape primitives [0.147, 0.206, 0.294, 0.206, 0.147]

Primitive types Default

Small object Number of shape primitives [2, 3, 4, 5]
Prob. of Number of shape primitives [0.25,0.375,0.25,0.125]

Primitive types Default

On-wall object Number of shape primitives [2, 3, 4, 5]
Prob. of Number of shape primitives [0.25,0.375,0.25,0.125]

Primitive types Default

On-roof object Number of shape primitives [2, 3, 4, 5]
Prob. of Number of shape primitives [0.25,0.375,0.25,0.125]

Primitive types Default

Wireframe object Number of shape primitives [1, 2, 3]
Prob. of Number of shape primitives [0.5, 0.25, 0.25]

Wireframe Primitive types Torus, Cube, Sphere
Wireframe thickness [mean scale/30, mean scale/20]

Sphere wireframes segments 8
Sphere wireframes ring count 8
Cube wireframes subdivision [1, 2, 3]

Cube wireframes subdivision prob. [0.33, 0.33, 0.33]
Torus wireframes minor radius 0.3 · mean scale

Torus wireframes major segments 8
Torus wireframes minor segments 8

ProB. Adding intersecting obj. 0.5
Types of intersecting obj. Default

Thin stick object Number of shape primitives 1
Primitive types Cube or Cylinder

Axis-aligned object Number of shape primitives 1
Primitive type Cube

Table 3. Object geometry details. ’mean scale’ is the average of the
geometry size over the three axis.

Prob. modify mat. 0.5
Prob. modify mat. of slot 0.4

Prob. specular scene 0.2
Basic roughness range [0.001, 0.2]
Basic metallic range [0.001, 1.0]

Specular roughness range [0.0, 0.05]
Specular metallic range [0.6, 1.0]

Table 4. Material details 1.

Glass IOR range [1.4, 1.6]
Glass roughness range [0.001, 0.1]

Prob. Axis-aligned object glass 0.8

Table 5. Material details 2.

1.3. Lighting Details
We include the lighting details of sunlight in Table 6. We
include details of luminous objects and light bulbs in Table 7.

Prob. sunlight 0.6
Sunlight strength [0.2, 2.0]

Prob. window glass 0.5
Prob. window bar 0.5

Table 6. Sunlight details.

2. Model and Training Details
We include more model and training details as follows.

Luminous objects Applied objects Thin sticks
Prob. 0.7

Prob. slot 0.2
Strength range 1 [0.2, 2.0]

Prob. strength range 1 0.9
Strength range 2 [5.0, 8.0]

Prob. strength range 2 0.1

Light bulb Num. range [2, 5]
Strength range 1 [0.2, 2.0]

Prob. strength range 1 0.9
Strength range 2 [5.0, 8.0]

Prob. strength range 2 0.1

Table 7. Luminous objects and light bulbs details.

Training input and target view sampling. For each training
sample in a batch, we randomly sample input views and
target views from a pool of 48 views following LRM training
strategy [1]. The number of input views is always 32. The
number of target views is 12 for 128-resolution experiments,
and 8 for 256-resolution experiments to balance the compute
cost. We allow the overlap between input and target views
during training. On the MegaSynth dataset, the set of 48
views are randomly sampled. On the real training data,
we evenly sample frames within a distance range, which is
sampled from the range of 64 to 128.
Camera pose normalization. The cameras of the input
views are normalized with a random global scale between
1.1 and 1.6. For Gaussian rendering, we clip the predicted
Gaussian scale of 0.135. We set a near plane of the Gaussian
renderer as 0.1.
Learning rate and scheduler. In the pre-training stage, we
use a peak learning rate of 4e− 4. In the tuning stage using
real-world data, we use a smaller peak learning rate of 1e−4.
For joint training or training exclusively on real data, we use
a learning rate of 4e− 4. All experiments adopt a warm-up
of 3000 iterations and cosine learning rate decay.
Batch size. For both 128 × 128 and 256 × 256 resolution
training, we use a batch size of 4 per GPU. The experiments
are launched on 64 A100 GPUs thus the global batch size is
256.
Training iterations. The training iterations for Res-128
and Res-256 are 120K and 80K for each training stage (i.e.,
pre-training and fine-tuning stages, as well as joint-training),
respectively. The final learning rate is decreased to 0 at the
end of training. Specifically, we end the pre-training stage at
75K and 55K iterations for experiments on resolution 128
and 256, respectively. Thus, The effective learning rate at
the end of pre-training stage is around 1e − 4. The reason
is we observe that training with more iterations, especially
with a learning rate smaller than 1e− 4, leads to overfit on
MegaSynth and makes the fine-tuning stage fail.
Training time cost. It takes GS-LRM 7 days for pre-training
and fine-tuning, and it takes 4 days for joint-training, under



resolution 128× 128. It takes 11 days for pre-training and
fine-tuning, and it takes 6 days for joint training on resolution
256× 256.
Gaussian Settings. We use spherical harmonics of 3 for 3D
Gaussians. We follow all other training hyper-parameters as
the original GS-LRM [2] and Long-LRM [3].
Loss weights. We set the weights of point location loss (on
synthetic data) and perceptual loss as 0.4 and 0.2, respec-
tively. For joint training, we set the probability of sampling
data from real and synthetic data as the same. For abla-
tions, we run experiments with resolution 128× 128 using
GS-LRM.
Training view rendering settings. For MegaSynth render-
ing, we sample 36 and 12 cameras in the outer and inner
parts of the scenes, respectively. We sample the FoV of
cameras within the range of 45 to 70 degrees.
Other details. In our ablation, quality control means we only
use four basic object types without wireframes, think struc-
ture and axis-aligned object, without material randomization,
and using only ambient lighting. We render MegaSynth with
Blender Cycles ray-tracing. Geometry are augmented shape
primitives. Textures are sampled from datasets, e.g. Mat-
Synth. It takes 10K CPU cores in total to create data in 3
days (Res-256), where scene creation and rendering take 0.5
and 2.5 days respectively. Rendering cost is same as other
synthetic data when using same rendering tool, while our
scene creation is much faster and scalable.

3. More Results
We include more visualization results with 32 input views
and 32 rendered target views as well as the ground-truth
target views in Fig. 1 and Fig. 2.

References
[1] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou,

Difan Liu, Feng Liu, Kalyan Sunkavalli, Trung Bui, and Hao
Tan. Lrm: Large reconstruction model for single image to 3d.
arXiv preprint arXiv:2311.04400, 2023.

[2] Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao,
Kalyan Sunkavalli, and Zexiang Xu. Gs-lrm: Large recon-
struction model for 3d gaussian splatting. arXiv preprint
arXiv:2404.19702, 2024.

[3] Chen Ziwen, Hao Tan, Kai Zhang, Sai Bi, Fujun Luan, Yicong
Hong, Li Fuxin, and Zexiang Xu. Long-lrm: Long-sequence
large reconstruction model for wide-coverage gaussian splats.
arXiv preprint 2410.12781, 2024.



Figure 1. Visualizaton of input views (first row of each example), render target view and ground-truth target views (last two rows of each
example). We include results on the DL3DV benchmark data.



Figure 2. Visualizaton of input views (first row of each example), render target view and ground-truth target views (last two rows of each
example). We include results on the Hypersim data.


