
R-SCoRe: Revisiting Scene Coordinate Regression for Robust Large-Scale
Visual Localization

Supplementary Material

In this supplementary, we first elaborate on the details in
the implementation of R-SCoRe. After that, we show addi-
tional results and interpret their meaning. Finally, we reflect
on the current limitations of R-SCoRe and discuss future
work we consider to improve the performance of localiza-
tion with SCR further and close the gap to feature matching
methods completely.

A. Implementation Details
A.1. Local encodings

Pretrained feature extractor. For Dedode [7], we select
the top 5,000 keypoints per image using the Dedode-L de-
tector and extract features using the Dedode-B descriptor.
For LoFTR [25], we utilize the CNN feature grid after layer
3, which is 8× smaller than the input image. We use the
center of each grid cell as the keypoint.

Local encoding PCA. Before training, we run PCA on
the local encodings to reduce their dimensionality to 128
entries. As shown in Fig. 1, reducing the feature dimen-
sionality to 128 dimensions preserves over 90% of the
variance for different local encoders [2, 7, 25] on various
datasets [11, 23, 24]. To enable efficient computation of
the PCA on the GPU, we extract approximately 10 million
features via sampling from the training images. In order to
incorporate all available features, incremental PCA could
be used instead. However, we found that sampling achieves
similar performance.

Local encoding buffer. We allocate the training buffer with

0 200 400
Number of components

0

20

40

60

80

100

Ex
pl

ai
ne

d 
va

ria
nc

e 
%

Hyundai 1F

ACE
Dedode
LoFTR

0 200 400
Number of components

Aachen

ACE
Dedode
LoFTR

Figure 1. Local Encoding PCA. The ratio of variance explained
by different numbers of PCA dimensions of local encodings. Re-
ducing the dimensionality to 128 dimensions usually preserves
over 90% of the variance.

32 million 128-dimensional features per GPU, across four
GPUs, for a total of 128 million features in half-precision
floating-point format.

Image data augmentation. Similar to previous works [2,
27], each image undergoes data augmentation with random
resizing, rotation, and color jittering, before we extract lo-
cal features. Random resizing adjusts the shorter edge, uni-
formly sampled between 320 and 720 pixels. Rotation is
applied uniformly within the range of -15 to 15 degrees,
while brightness and contrast are jittered with factors uni-
formly sampled from [0.9, 1.1].

A.2. Global Encoding Learning with Node2Vec
We use Node2Vec [8] to learn node embeddings for the
training images based on the covisibility graph of the scene.
Node2Vec performs weighted random walks on the graph
and learns embeddings with the Skip-gram [14] objective.
The random walk is controlled by two parameters: the re-
turn parameter p, and the in-out parameter q. These param-
eters influence the random walk behavior: the probability
of returning to the previous node is proportional to 1

p , mov-
ing farther from the current node is proportional to 1

q , and
staying equidistant to the previous node is proportional to
1.

We use parameters favoring less exploration: p = 0.25
and q = 4. The embedding dimension is set to 256,
aligning with the R2Former [31] feature dimension used in
GLACE [27] to enable a fair comparison in our evaluation.

A.3. Covisibility Graph Construction
We estimate covisibility directly from camera poses us-
ing a weighted frustum overlap, following [17, 22]. For
each image i, we uniformly sample Ni pixels and unproject
each with random depths within [0, dv], then check visibil-
ity Vk(i → j) from viewing frustum image j. The directed
overlap score is computed as:

O(i → j) =

∑Ni

k=1 Vk(i → j)αk(i, j)

Ni
, (1)

where αk(i, j) is the cosine similarity between ray direc-
tions. The covisibility graph is constructed by applying a
threshold of 0.2 to the harmonic mean of O(i → j) and
O(j → i). We use maximum viewing frustum depth dv = 8
for indoor scenes and dv = 50 for outdoor scenes.

Recall that Table 6 of the main paper compares covis-
ibility graph construction from frustum overlap to a more



sophisticated version that performs feature matching. For
the Aachen Day-Night [23, 24], we observe similar perfor-
mance and, hence, prefer the simpler algorithm, based on
frustum overlap. Here, we shed some light on how covis-
ibility graph construction from feature matching is imple-
mented. First, we perform feature matching between im-
age pairs using SuperPoint [5] and SuperGlue [21], veri-
fied against ground truth poses. Second, we consider image
pairs covisible that possess 100 or more matched keypoints.

A.4. Network Architecture
We adopt the MLP architecture and position decoder from
GLACE [27], enhanced with an additional refinement mod-
ule. The architecture employs n = 3 residual blocks for
both the initial output and the refinement module, resulting
in a total of six residual blocks. The width of the resid-
ual blocks is set to w = 768 for the Aachen [23, 24] and
Hyundai Department Store [11] 4F datasets, and w = 1280
for the Hyundai Department Store [11] B1 and 1F datasets.
The hidden width in the residual block is expanded by a
factor m = 2.

A.5. Training Details
The training is conducted over 100,000 iterations using the
AdamW [13] optimizer, with a weight decay set to 0.01.
With 4 NVIDIA GeForce RTX 4090, the training takes
approximately 4 hours for smaller networks with width
w = 768 and up to 8 hours for larger networks with width
w = 1280. For additional acceleration and memory effi-
ciency, our model is trained with mixed precision. Finally,
the model weight and bias are saved in a half-precision for-
mat to reduce the model size. An exception are the training
camera cluster centers, which are saved in single-precision.

B. Additional Results

Encoding Augmentation Dept. 1F Val
R2Former [31] Gaussian 42.1 74.5 92.2
R2Former [31] Covis 62.0 83.8 94.8

Covis Covis 72.3 88.7 95.5
Covis Gaussian 59.1 78.9 90.5

Table 1. Ablation study of global encodings. Accuracy at (0.1m,
1°), (0.25m, 2°), and (1m, 5°) thresholds. The isotropic Gaussian
data augmentation can also work with our covisibility graph en-
coding directly, while the best performance is achieved by using
our covisibility graph data augmentation.

B.1. Hyundai Department Store Validation Results
The results for the validation set of Hyundai Department
Store [11] are shown in Tab. 2. Note that Neumap [26] only
provides their result on the validation set. In our main pa-
per we evaluate on the official test set of [11], and, hence,

[26] is omitted from the evaluation there. The findings from
the validation set are similar to the analysis we conduct in
the main paper. While Neumap [26] delivers similar perfor-
mance to R-SCoRe (using local encodings of Dedode [7])
on 1F and 4F, it significantly trails our method on B1. In
addition, R-SCoRe maintains about 6-8× smaller map sizes
and its localization speed appears to be considerably faster
than those of Neumap [26].

B.2. Additional Global Encoding Ablation
As shown in Fig. 2, using multiple hypotheses can deliver
a significant gain in performance. In general, increasing
the number of hypotheses improves the performance, al-
though the gain diminishes when the number of hypotheses
becomes larger than 10.

In Tab. 1, we explore whether isotropic Gaussian data
augmentation proposed in [27] can also work with our cov-
isibility graph encoding. While we can indeed (cf . last row)
improve the performance directly, our covisibility graph
augmentation delivers better results for either encoding. For
the experiment, we use the same standard deviation σ = 0.1
for the noise as in GLACE [27].

B.3. Network Architecture Ablation
Recall that our model predicts a coarse intermediate and a
refined output. Without refinement, our network architec-
ture becomes more similar to the standard SCR pipelines
introduced in [2, 27]. To justify our design, we conduct
an ablation study using the original network architecture
without the refinement module. For a fair comparison, the
baseline using the original architecture has the same total
depth and width but directly outputs the final coordinate
at the end without a coarse to fine refinement. In training,
our pipeline with the explicit refinement module achieves a
lower median reprojection error and also reduces the train-
ing error more rapidly (Fig. 3, left). Similarly, the ratio of
inlier training predictions improves more quickly with ex-
plicit refinement, but after some time, both pipelines show
a similar value (Fig. 3, middle). A closer look at the mean
reprojection error (Fig. 3, right) of these inliers shows a sig-
nificant gap also at the end of training. We conjecture that
our pipeline with the explicit refinement module can deliver
more accurate predictions. Finally, as shown in Tab. 3, the
superior training performance also leads to improved local-
ization accuracy of the pipeline with the explicit refinement
module – especially for stricter thresholds. For this evalua-
tion on Aachen Day-Night [23, 24], we employ covisibility
graphs computed by frustum overlap.

C. Limitations and Future Work

Throughout our evaluation, we show that R-SCoRe
achieves competitive performance on recent large-scale
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Figure 2. Comparison of localization accuracy with different number of global hypotheses. The accuracy at (0.1m, 1°), (0.25m, 2°),
and (1m, 5°) thresholds with different numbers of global hypotheses is plotted. Increasing the number of hypotheses improves localization
performance, though the performance gain typically plateaus when the number of hypotheses exceeds 10.

Dept. 1F Validation Dept. 4F Validation Dept. B1 Validation
HLoc+D2-Net [6, 20] (83.2 / 89.2 /94.5) / 398GB (72.1 / 85.3 / 98.5) / 183GB (70.2/ 78.0 / 86.1) / 505GB
HLoc+R2D2 [18, 20] (85.8 / 89.9 / 94.4) / 166GB (72.6/ 84.6 / 98.3) / 76GB (71.6/ 78.0 / 86.0) / 210GB
PoseNet [10] (0.0 / 0.0 / 0.4) / 41MB (0.0 / 0.0 / 0.2) / 41MB (0.0 / 0.0 / 0.0) / 41MB
Neumap [26] (75.5 / 88.2 / 95.8) / 726MB (70.4 / 85.4 / 99.0) / 431MB (46.0 /66.5 / 79.8) / 857MB
ESAC (×50) [1] (49.7 / 71.5 / 84.1) /1.4GB (45.2 / 69.9 / 85.1) / 1.4GB ( 5.4 / 9.1 / 14.2 ) / 1.4GB
ACE (×50) [2] (14.2 / 49.9 / 77.8) / 205MB (29.3 / 80.0 / 96.7) / 205MB (2.6 / 14.0 / 28.2) / 205MB
GLACE [27] (4.9 / 24.4 / 53.5) / 42MB (24.5 / 57.5 / 85.4) / 42MB (1.0 / 4.5 / 13.8) / 42MB
R-SCoRe (LoFTR∗ [25]) (72.3 / 88.7 / 95.5) / 127MB (62.5 / 82.2 / 98.6) / 50MB (29.4 / 51.3 / 69.6) / 130MB

+ Depth (74.7 / 89.2 / 95.9) / 127MB (67.6 / 84.4 / 98.5) / 50MB (32.4 / 54.4 / 71.0) / 130MB
R-SCoRe (Dedode [7]) (70.6 / 86.6 / 95.5) / 127MB (63.9 / 84.2 / 98.3) / 50MB (57.7 / 74.7 / 86.7) / 130MB

+ Depth (77.1 / 88.6 / 95.6) / 127MB (68.5 / 84.9 / 98.5) / 50MB (59.5 / 75.6 / 86.8) / 130MB

Table 2. Hyundai Department Store Validation Set evaluation. The percentages of query images within three thresholds: (0.1m,
1°), (0.25m, 2°), and (1m, 5°) and the map size are reported. R-SCoRe achieves competitive accuracy with a small map size. ∗We
use LoFTR [25] outdoor, trained on MegaDepth [12], instead of the indoor model trained on ScanNet [4] for the B1 scene with strong
illumination change.

Aachen Day Aachen Night
Original 65.5 82.9 95.3 51.0 78.6 96.9
Refinement 74.8 86.9 96.4 64.3 89.8 96.9

Table 3. Ablation study of refinement module. Accuracy at
(0.25m, 2°), (0.5m, 5°), and (5m, 10°) thresholds are reported.
The explicit refinement module improves the performance, espe-
cially for stricter thresholds.

benchmarks, while maintaining very small map sizes. Al-
though we improve on recent SCR methods there still re-
mains a gap – compared to the state-of-the-art feature based
methods – in meeting the strictest pose quality thresholds.
We conjecture that this limitation may stem from the net-
work’s inability to fully generalize and be invariant un-
der extreme input variations, which makes the output co-

ordinate not accurate enough. One potential direction for
improvement is integrating our discriminative scene repre-
sentation with generative models like NeRF [15]. For in-
stance, SCR could provide a robust initialization, which
could then be refined by aligning with NeRF-based ap-
proaches [3, 28, 29].

Additionally, further reductions in map size could be ex-
plored by integrating techniques such as pruning [30], low-
rank approximation [19], and quantization [9, 16], which all
appear to be applicable to our pipeline in a straightforward
manner.
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