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Supplementary Material

Within the supplementary material, we provide:
• Implementation details in Appendix Sec. A.
• Qualitative and Quantitative comparison with Animatable

Gaussians [38] in Appendix Sec. B.
• Additional ablative studies in Appendix Sec. C.

A. Implementation Details
Initialization. We initialize approximately 50,000 motion
Gaussians in the canonical frame using a uniform random
distribution. During subsequent optimization, aside from
the photometric loss in Eq. 1, the isotropic loss and size
loss are defined as follows:
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where si represents the scaling parameters of the i-th
Gaussian, N denotes the number of Gaussians, and e is the
exponential activation function. The isotropic loss ensures
the ratio between the major and minor axes of each Gaus-
sian does not exceed r (set to 4 in our experiments). The sg
denotes stop-gradient operator. For appearance Gaussians,
we use the initialized motion Gaussians as input and fur-
ther optimize it with densification and prune as the original
3DGS [30].
Network Architecture. We use three identical U-Net ar-
chitectures, adjusting the output feature dimensions to ac-
commodate different attributes. Each U-Net incorporates a
self-attention layer to maintain global consistency. As illus-
trated in Fig. 10, the self-attention layer is applied before
the final downsampling step of the U-Net.
Re-performance. During the alignment phase, we assign
semantic labels to specific regions, including the head, left
hand, right hand, left foot, and right foot, to align corre-
sponding clusters between the source and target Gaussians.
For objects, we use pairwise semantic prompts (e.g., “bas-
ketball” and “balloon”) and assign consistent labels dur-
ing the unprojection process, ensuring accurate alignment
across different objects. The re-performance stage employs
the Adam optimizer, with the alignment phase trained for
15,000 iterations and the motion transfer phase for 2,000
iterations.

Our method efficiently generates Gaussian sequences for
high-fidelity playback and vivid re-performance of gen-

Figure 10. Network architecture.

Figure 11. Qualitative comparison with Animatable Gaus-
sians [38].

eral non-rigid scenes. We train the model using the Py-
Torch framework on a single NVIDIA GeForce RTX3090
GPU, achieving a rendering speed of 7 FPS. The Gaussian
sequences can be further baked and compressed via Du-
alGS [27], allowing seamless integration into low-end de-
vices like VR headsets and iPads for intuitive, user-friendly
interaction as demonstrated in Fig. 12.

B. Comparison
We further compare our method with Animatable Gaus-
sians [38] to evaluate its rendering quality on novel views
and motions. As shown in Fig. 11 and Tab. 3, this method
relies heavily on the human parametric model SMPL [44],
which constrains its ability to accurately estimate motion in
regions far from the human body. This limitation results in
severe artifacts when handling general non-rigid scenarios.



Figure 12. We further compress our Gaussian sequences using DualGS, demonstrating their adaptability in various immersive applications.

Methods Novel View Novel Motion
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Animatable Gaussians 24.26 0.934 0.0647 22.04 0.911 0.079
Ours 32.09 0.979 0.0310 30.06 0.976 0.0277

Table 3. Quantitative comparison with Animatable Gaus-
sians [38].

C. Ablations

Number of Camera Views. To assess the robustness of
RePerformer under sparser input views, we perform abla-
tion experiments using uniformly selected subsets of 20,
40, and 60 camera views for training, denoted as w/20.cam,
w/40.cam, and w/60.cam. As shown in Tab. 4, our method
maintains satisfactory rendering quality even with sparser
input views.
Position Map Resolution. As illustrated in Tab. 5, we con-



Methods PSNR ↑ SSIM ↑ LPIPS ↓
w/20.cam 30.36 0.971 0.0471
w/40.cam 30.89 0.975 0.0447
w/60.cam 31.33 0.977 0.0429
Ours 32.09 0.979 0.0310

Table 4. Quantitative Ablation Study on the different input view
numbers.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
w/ 64.res 28.85 0.949 0.0887
w/ 128.res 32.82 0.981 0.0413
w/ 256.res 33.45 0.986 0.0283
w/o atten 34.16 0.990 0.0197
Ours 34.27 0.989 0.0227

Table 5. Quantitative Ablation Study on the resolution of position
maps.

duct ablation studies with position map resolutions of 64,
128, 256, and 512 (ours), corresponding to different num-
bers of Gaussians. Although larger position maps can store
denser Gaussians, they exceed GPU memory limitations.
We also compare results without the self-attention layer.
Our full pipeline achieves high-fidelity rendering quality at
a resolution of 512 with the self-attention module, as shown
in Tab. 5.
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