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A. Content Generation Prompts
For content generation in Sec. 3.1, we use the prompt
shown in Fig. 6 to guide GPT-4o-mini [38] in generating
HST-format content for a given document title. Addition-
ally, we use GPT-4o-mini to generate numerous document
titles covering themes such as business, government, educa-
tion, and medical. The prompt is demonstrated in Fig. 7.

For domain-specific document generation in Sec. 4.4,
we use GPT-4o to generate document content for the do-
mains of SROIE [17] (receipts) and EPHOIE [43] (exam
cover pages). Key-value annotations are also provided by
GPT-4o using properly designed prompts. The prompt for
SROIE is shown in Fig. 8. The prompt for EPHOIE is orig-
inally designed in Chinese; its English translation is pre-
sented in Fig. 9. Both prompts first describe the task and
the definitions of pre-defined keys, then describe the out-
put format, and finally provide in-context demonstrations
for GPT to reference. After obtaining the text content and
annotations from GPT-4o, the text content is transformed
into the CLGM input format, which then handles the layout
design for these documents.

B. Training Setup
CLGM is initialized from LLaMA-3.1-8B [8] and is fine-
tuned using LoRA [15] adapter. The LoRA configuration is
set as follows: LoRA rank and LoRA alpha are 64, LoRA
dropout is 0.1. LoRA is applied to all the linear layers. The
model is trained on 4 NVIDIA V100 GPUs (32GB) with
float16 precision. We use paged AdamW 32-bit with weight
decay of 0.001 as the optimizer. The total batch size is set
to 128. We adopt a cosine annealing learning rate scheduler
with a learning rate of 3e-4 and 3% warmup ratio over 4,800
iterations. The total training takes about 13 days.

C. Evaluation Setup
This section elaborates on (1) how VIE benchmarks are
transformed into QA formats to evaluate the performance
of MLLMs, (2) the ground truth correction for SROIE–, and
(3) the implementation details for all the document under-
standing models used in experiments in Sec. 4.

C.1. QA for VIE benchmarks
When leveraging LLMs/MLLMs for VIE tasks, annotations
are transformed into a question-answering format, such as
{Q: What is the ”key” in the given document? A: ”value”}.
We provide the question prompts used for querying each
benchmark in Tab. 7. All experiments with MLLMs fol-

low this setup, and their performance is reported accord-
ingly. However, the performance of LayoutLLM [33] is
taken from its original paper, as the model checkpoint is
not publicly available for testing.

C.2. Ground Truth Correction for SROIE–

We identified one annotation error in SROIE– and cor-
rected it for performance evaluation. The image is named
X51005806696.jpg in the dataset. The image with incorrect
and corrected annotation is shown in Fig. 10.

C.3. Implementation Details in Experiments
This subsection elaborates on the training details of docu-
ment understanding models we utilize in experiments, in-
cluding MLLMs and LayoutLMv3 [16].
MLLMs. We leverage LoRA to fine-tune Qwen2-VL-
7B [44] and LLaVA-NeXT-Mistral-7B [32]. The settings
for experiments in Sec. 4.3 are described as follows. For
LoRA configuration, we set rank to 8, alpha to 16, and
dropout to 0.01, applying it to all linear layers. We use
AdamW with weight decay of 0.1 as the optimizer. The
total batch size is set to 128. We adopt a cosine annealing
learning rate scheduler with a learning rate of 5e-6 and 10%
warmup ratio over 2 epochs.

The settings for experiments in Sec. 4.4 are described as
follows. For LoRA configuration, we set rank to 4, alpha
to 8, and dropout to 0.1, applying it to all linear layers. We
use AdamW with weight decay of 0.1 as the optimizer. The
total batch size is set to 16. We adopt a cosine annealing
learning rate scheduler with a learning rate of 1e-5 and 10%
warmup ratio over 10 epochs.
LayoutLMv3. The SER model used in Sec. 4.5 is initial-
ized from LayoutLMv3BASE, with only the additional lin-
ear classifier fine-tuned. Following previous works [16,
46, 47], the classifier consists of a single linear layer that
maps LayoutLMv3’s encoded tokens, represented by 768-
dimension, to seven possible classes. Following standard
sequence labeling conventions, these classes are: begin-
of-header, begin-of-question, begin-of-answer, inside-of-
header, inside-of-question, inside-of-answer, and other.
The dropout rate of the linear classifier is set to 0.1. The
optimization process utilizes the AdamW optimizer with a
learning rate of 1e-5.

D. More Examples of Generated Images
We demonstrate more examples of document images gener-
ated by RIDGE in Fig. 11.



Benchmark Question
FUNSD What is the content in the ”key” field? Directly output the answer.

XFUND-ZH ”key”瘡儡嬡昡両丢Ａ謡瘢挡嘡笡笡校〡
(Translation: What is the content in the ”key” field? Directly output the answer.)

CORD What is the ”key”? Directly output the answer.

EPHOIE 輡弡耡匡瘡”key”昡両丢Ａ謡瘢挡嘡笡笡校〡
(Translation: What is the ”key” in the given test paper? Directly output the answer.)

POIE What is the ”key”? Directly output the answer.
CORD– What is the ”key” in the given document? Directly output the answer.
SROIE– What is the ”key” in the given document? Directly output the answer.

Table 7. Question prompts used for each benchmark.

FUNSD XFUND-ZH

FID→ Over.→ Align.→ LayoutLMv3
FID→ FID→ Over.→ Align.→ LayoutLMv3

FID→
Ours 9.59 4.75 0.07 7.66 14.76 3.00 0.01 7.45
Real data 9.19 2.31 0.09 5.83 12.81 0.92 0.04 1.04

Table 8. Layout and content evaluation on FUNSD and XFUND-
ZH. Align. represents Alignment. Over. represents Overlap.

E. Layout & Content Evaluation.
In Tab. 8, we follow previous works [19, 23, 31] using FID,
Alignment, and Overlap metrics to evaluate our layout gen-
eration quality on FUNSD and XFUND-ZH datasets. The
FID between train and test sets serves as Real data. Com-
paring it to the FID between test set and synthetic layouts,
the small differences show that CLGM can produce realis-
tic layouts. To evaluate both content & layout concurrently,
we use LayoutLMv3 as a feature extractor due to its joint
understanding of textual and spatial information. We syn-
thesize document images based on texts from each dataset’s
test set. LayoutLMv3 FID is computed using CLS token
embeddings. With no studies for joint evaluation of content
and layout, our results serve as a baseline for future studies.

F. One-Stage & Two-Stage Generation.
In this section, we discuss the possibility of one-stage gen-
eration and provide comparisons between one-stage and
two-stage generation. When approaching one-stage gen-
eration of relation-rich visual documents, which means si-
multaneously generating textual content, annotations (entity
category and linking), and layouts, we leverage in-context
learning with LLMs, rather than applying supervised fine-
tuning, since existing open-set VIE datasets are scarce. We
randomly choose 10 documents each from FUNSD and
XFUND-ZH and use their full annotations as in-context
learning exemplars. The input entity order in each exem-
plar is sorted by bounding box coordinates from left-top
to right-bottom to mimic the natural reading order and im-
prove LLMs’ understanding. The prompt is provided in

Fig. 12. We conduct the one-stage generation experiment
using GPT-4o, with qualitative results shown in Fig. 13(a)
for English documents and Fig. 14(a) for Chinese docu-
ments. For comparison, the two-stage results from RIDGE
are presented in Fig. 13(b) and Fig. 14(b), respectively.
Each example image pair presents the raw generated doc-
ument on the left and its corresponding visualized annota-
tion on the right. All results are displayed without styling
operations and use the same font for fair comparison.

In our observations, these two approaches exhibit several
significant differences. From a layout perspective, the one-
stage method produces layouts that are more monotonous
and lack proper alignment, thereby reducing readability. In
contrast, the two-stage method generates diverse and com-
plex hierarchical structures with high alignment, resulting
in a clear visual hierarchy and scannable structure. Regard-
ing relation annotations, the one-stage approach predomi-
nantly generates simple one-to-one relationships, omitting
necessary hierarchical relations. Nevertheless, in several
examples, we observe its attempts to produce more com-
plex relationships (e.g., one-to-many with multiple hierar-
chical levels), though these attempts often result in notable
entity linking errors. We hypothesize that this may be at-
tributed to the simultaneous processing of numerous entities
containing substantial numerical content (including bound-
ing box coordinates and entity id references within linking),
which constitutes an excessively complex task with long se-
quences, hindering the model’s ability to leverage its inher-
ent knowledge. By contrast, the two-stage method gener-
ates complex linking with highly hierarchical structure.

Furthermore, we provide a quantitative analysis of rela-
tion complexity and failure rates for document generation in
Tab. 9. For a fair comparison, we conduct 50 generation at-
tempts across both one-stage and two-stage methods, each
applied to English and Chinese documents separately. In
terms of relation complexity, entities generated by the one-
stage method mainly fall within levels 0 and 1 with a nearly
1:1 distribution, indicating almost exclusively one-to-one
relationships that lack complexity. In contrast, the two-



hierarchical level avg #entities
per doc

failure
rate0 1 2 3 4 5

EN 1-stage (GPT-4o) 18.1 15.1 0.5 0.0 0.0 0.0 34.0 48%
2-stage (RIDGE) 9.1 15.2 22.1 9.1 1.3 0.0 56.8 6%

ZH 1-stage (GPT-4o) 25.9 26.3 0.7 0.0 0.0 0.0 52.9 20%
2-stage (RIDGE) 9.4 23.0 38.3 9.4 2.3 0.1 82.5 10%

Table 9. Analysis of relation complexity and failure rates for doc-
ument generation. The values in the hierarchical level columns
indicate the average number of entities at each hierarchical level
per document.

stage method shows a more diverse hierarchical distribu-
tion with substantial presence across levels 0-3 and some in
deeper levels, demonstrating richer relationship structures.
Additionally, the failure rate represents the percentage of
samples that could not be successfully processed (e.g., in-
correct JSON format) or contained notable linking errors.
The one-stage method exhibits significantly higher failure
rates than the two-stage approach. Moreover, such a high
failure rate (48% in English one-stage generation) would
likely impede effective deployment in practical scenarios.

In conclusion, two-stage generation effectively decom-
poses the generation of textual content with annotations and
layout into separate subtasks, reducing the complexity of
each task and maximizing the potential of LLMs.

G. Visual Information Extraction Methods.
Visual Information Extraction (VIE) is a crucial task within
Visual Document Understanding (VDU), encompassing en-
tity labeling and extracting relations between entities in
visually-rich documents. The methodologies can be cate-
gorized into two main approaches: OCR-based and OCR-
free. In OCR-based methods, early studies [3, 10] em-
ploy Graph Neural Networks (GNNs) to model entity in-
formation and relationships. Several pre-trained language
models [13, 41, 46] emerge utilizing transformers to model
text and layout interactions, with some additionally incor-
porating image modality [16, 37, 47]. These models lever-
age self-supervised learning with large volumes of docu-
ment data, enabling application to general documents. Lay-
outLMv3 [16] is one of these models that is widely used
and can incorporate different downstream modules for fine-
tuning on various datasets or tasks. However, this approach
is limited by the requirement for specific fine-tuning on
each distinct dataset or task. With the emergence of LLMs
and their superior generalization capabilities, DocLLM [42]
integrates layout information with LLMs, while Layout-
LLM [33] incorporates both layout and image modalities
into LLMs. In OCR-free approaches, early studies [7, 25]
utilize end-to-end fashion with transformers to address doc-
ument understanding challenges. Recently, MLLMs have
been leveraged to solve document-oriented problems. Al-

though document-centric models [14, 49] are initially more
prevalent, with advancements in MLLMs, general-purpose
MLLMs [5, 32, 44] achieve promising performance in
document-oriented tasks. For instance, Qwen2-VL [44] ap-
proaches human-level performance on DocVQA, suggest-
ing a trend toward utilizing general-purpose MLLMs in the
VDU field.



Based on the provided form title, create realistic and diverse content for the paper form, including 
multiple key-value pairs. These pairs can be one-to-one, one-to-many, or multiple-choice 
questions. The more diversity, the better. Avoid using overly common names like "John Doe."
Use <h{num}></h{num}> to enclose each paragraph. Each item should start with the "-" symbol, 
and the number of "-" symbols should indicate the hierarchy level (e.g. "--" is related to the last "-" 
before it, "---" is related to the last "--" before it). Make sure the hierarchy level is correct.
Generate content of approximately 200-300 words, placing it within <content></content>. The 
output should be in plain text. DO NOT USE MARKDOWN, TAB, and ICON!
Pretend you are filling out this paper form, so include answers that appear realistic, diverse, and 
feature a complex hierarchical structure.

user

GREENWOOD SPRING FESTIVAL FEEDBACK FORM
user

<content>
- Event Date: April 22, 2023
- Report Date: May 10, 2023
- Team: Eastern - GSF
- Event Coordinator: A. R. Mitchell

<h1> Promotional Items:
- T-Shirts: 25
- Brochure: 75
- Banners: 8
- Stickers: 500
- Date Received: 04/15/23
</h1>

<h2> RSVP Details:
- # Invited: 150
- Method of RSVP:
-- Online Form 
-- Email 
-- Phone Call ☐
-- In-Person ☐
- Date Invitations Sent: 03/20/23
</h2>

<h3> Displays Setup:
- Booths: 5
- Outdoor Banners: 10
- Flyer Stands: 15
</h3>

<h4> Hospitality Area Review
- Food Quality
-- ☐ Bad
-- ☐ Average
--  Excellent
- Cleanliness
-- Dining Area
--- ☐ Bad
--- ☐ Average
---  Excellent
-- Waste Management
--- ☐ Bad
---  Average
--- ☐ Excellent
-- Restroom Facilities
--- ☐ Bad
--- ☐ Average
---  Excellent
- Service
-- Staff Friendliness
--- ☐ Bad
--- ☐ Average
---  Excellent
-- Efficiency
--- ☐ Bad
--- ☐ Average
---  Excellent
</h4>
</content>

LLM

{query document title}
user

Task 
instruction

In-context
one-shot
exemplar

Query

Figure 6. The prompt for guiding GPT-4o-mini in generating HST-format content for a given document title.



user
Please create 200 form titles that might be used in a business setting.
The titles should clearly convey the purpose of each form and look realistic, as they would in an actual company.
Directly continue, do not repeat the following:

1. NEW COMPETITIVE PRODUCT
2. FAX TRANSMISSION
3. OLD GOLD - LIGHT BOX 100's PROGRESS REPORT
4. COUPON CODE REGISTRATION FORM
5. THE TOBACCO INSTITUTE FIFTH ANNUAL COLLEGE OF TOBACCO KNOWLEDGE REGISTRATION FORM

Example form titles

Government
1. Request for Leave or Approved Absence
2. Request for Taxpayer Identification Number and Certification
3. Application for a Social Security Card
4. U.S. Passport Application
5. Free Application for Federal Student Aid

Education

1. University of California Graduate Admission Application Form
2. New York City Public Elementary School Transfer Request Form
3. National Taiwan University Undergraduate Graduation Application Form
4. University of Texas Official Transcript Request Form
5. Boston High School Parental Consent Form (Field Trip Specific)
6. Stanford University Financial Aid Application Form
7. University of Michigan Semester Course Registration Form
8. Harvard University Student Health Declaration Form
9. National Taiwan Normal University Exchange Student Application Form
10. Fu Jen Catholic University Student Internship Program Application Form

Medical
1. Patient Registration Form
2. Medical History Form
3. Informed Consent for Treatment
4. HIPAA Privacy Authorization Form
5. Insurance Information and Verification Form

Example form titles
for different themes

Figure 7. Prompts for generating form titles across various themes, including business, government, education, and medical.



user
Given an example of receipt text, mimic the same style while changing the content, and then output the annotation after 
mimicking. The receipt should include the following information:
1. "company": there might be a brand name before it, but only the company name should be classified as "company".
2. "address": you should mimic full address, but just classify the address starting from the street name (not including the
building name) as "address".
3. "date": there might be time (HH:MM:SS) after the date, but only the date should be classified as "date".
4. "total ": the mimic content is good to appear lots of related fields likes “subtotal”, “rounding adj.”, “tax”, “discount", "GST 
adj.", "Grand Total", etc. However, only amount after rounding, adjusting, or discounting should be classified as "total". 

You should output mimicked text and annotation in the following format:
### Text:
{{text}}

### Text Annotation:
{{text annotation}}

### Key Annotation:
{{key annotation}}

Here is the example:
### Text:
{Example plain text}

### Text Annotation:
{Example text annotation}

### Key Annotation:
{Example key annotation}

Now start to mimic 10 receipts based on the given example. Split each receipt with "### SEPARATOR ###".

Output
format

Example plain text
NewCo Diner 
Lot ZF123, Upper Deck Level 
Skyline Plaza 
Singapore Changi Airport 
Skyline Food Services Ltd (987654-B) 
GST ID 000123456789 
Tel: 123-4567890 

-------------------------------------------- 
Tax Invoice: 123-456789        Dine In 
Date: 2024/11/07 12:45:30 

Classic Burger       3    SGD24.90 
Green Tea (L)        2    SGD8.60 
Orange Juice (L)      1    SGD5.40 
Espresso (S)        1    SGD4.20 

-------------------------------------------- 
Total After Rounding    SGD43.10 
-------------------------------------------- 

(Bill Inclusive of 7% GST : SGD2.81) 

CASH           SGD50.00 
Change          SGD6.90 

Thank You, Please Visit Again. 
Free Open Wifi @NewCo Diner 
No Password Needed 

123-2024/11/07 12:45:00  JAMES  123-456789 [1]

[{"id": 0, "text": "NewCo Diner", "label": "none"},
    {"id": 1, "text": "Lot ZF123, Upper Deck Level\n

  Skyline Plaza\n
   Singapore Changi Airport", "label": "address"},
    {"id": 2, "text": "Skyline Food Services Ltd", "label": "company"},
    {"id": 3, "text": "(987654-B)", "label": "none"},
    ...     

        {"id": 11, "text": "Date:", "label": "none"},
    {"id": 12, "text": "2024/11/07", "label": "date"},
    {"id": 13, "text": "12:45:30", "label": "none"},
    {"id": 14, "text": "Classic Burger", "label": "none"},
    {"id": 15, "text": "3", "label": "none"},
    {"id": 16, "text": "SGD24.90", "label": "none"},
    {"id": 17, "text": "Green Tea (L)", "label": "none"},
    {"id": 18, "text": "2", "label": "none"},
    {"id": 19, "text": "SGD8.60", "label": "none"},
    ...     
    {"id": 26, "text": "Total After Rounding", "label": "none"},
    {"id": 27, "text": "SGD43.10", "label": "total"},
    {"id": 28, "text": "Bill Inclusive of 7% GST:", "label": "none"},
    {"id": 29, "text": "SGD2.81", "label": "none"},
    {"id": 30, "text": "CASH", "label": "none"},
    {"id": 31, "text": "SGD50.00", "label": "none"},
    {"id": 32, "text": "Change", "label": "none"},
    {"id": 33, "text": "SGD6.90", "label": "none"},
    {"id": 34, "text": "Thank You, Please Visit Again.", "label": "none"},
    {“id”: 35, “text”: “Free Open Wifi @NewCo Diner”, “label”: “none”}, ...]

Example text annotation

{"company": 2, "address": 1, "date": 12, "total": 27}

Example key annotation

In-context
one-shot
exemplar

Key 
definition

(b) Example Response

(a) Prompt

...
### SEPARATOR ###
### Text:
...
### Text Annotation:
...
### Key Annotation:
...
### SEPARATOR ###
...

GPT-4o
[...,

    {"id": 1, "text": "Suite 503, Reading Tower\nCity Literary Hub", "label": "address"},
  {"id": 2, "text": "Creative Minds Publications", "label": "company"},

    ...,
  {"id": 12, "text": "2023/05/20", "label": "date"}, ...
  {"id": 24, "text": "USD80.25", "label": "total"}, ...]

{"company": 2,
"address": 1,
"date": 12,
"total": 24}

{"width": 885, "height": 1790, "entities": [...,
  {"text": " Suite 503, Reading Tower\nCity Literary Hub ", "box": ["<FILL_1>"]},
  {"text": "Creative Minds Publications", "box": ["<FILL_2>"]}, ...,
  {"text": "2023/05/20", "box": ["<FILL_12>"]}, ...,
  {"text": "USD80.25", "box": ["<FILL_24>"]}, ...]}

Constructing
CLGM input

Key annotation

Text annotation

Figure 8. The prompt for generating SROIE-styled content. (a) Prompt for GPT-4o. (b) Example response from GPT-4o.



user

I will provide you with an example of a Chinese exam text. Please modify the content while mimicking the same style and then output 
the annotated file after mimicking. The exam content must include the following information: 
1. "School": The full name of the school. 
2. "Name": The student's name. Avoid using common placeholder names like "Wang Xiaoming" or "Wang Xiaomei". 
3. "Subject": It should fully represent the exam subject. This may correspond to a simple subject field or a major exam title. The title may 
also include additional information such as the academic year, mid-term exam, or final exam. However, when generating annotations, 
ensure to accurately extract the content representing the subject. 
4. "Grade": The full name of the grade. 

Additionally, the content may include the following:
5. "Exam Date": The full exam date, often including year, month, and day.
6. "Class": The full name of the class. Avoid confusion with the grade; if the class is not specifically indicated but only the grade is 
mentioned, it should not appear in the kvpairs.
7. "Exam Number": A string of alphanumeric characters, mostly numbers, usually with multiple digits.
8. "Score": The exam score, ranging from 0 to 100. 
9. "Seat Number": The seat number, usually ranging from 0 to 100.  
10. "Student ID": A string of alphanumeric characters, mostly numbers, usually with multiple digits.
11. "Admission Number": A string of alphanumeric characters, mostly numbers, usually with multiple digits. 

At least two items from 5 to 11 should be included. All can be included, or some additional information not among these 11 categories 
may be generated. Each item can have at most one corresponding value. The text content should primarily be in Simplified Chinese. Now, 
I will provide you with the output format. Please respond with a list of JSON in the following format:

[{ "id": 0,
   "content": {
       "text": [],
       "kvpair": {}
   }
 },
 { "id": 1,
   "content": {
       "text": [],
       "kvpair": {}
   }
 }, ...]

where id represents the index of the generated document, and content contains the text content and annotation information. It is 
recorded with two keys: "text" will list all generated textual content, and "kvpair" will generate all corresponding key annotation. Each 
element in "text" is a complete entity stored as a string. Each element in "kvpair" is one of the defined key paired with its corresponding 
value, stored as a dictionary. Each dictionary key will be one of the 11 categories, and each category will have only one unique 
corresponding value. Now I will provide you with some examples. Please refer to these examples to generate new content:

Now, please mimic these examples and the required response format, and ensure to include the categories listed in the examples:

Output
format

Key 
definition

(b) Example Response

(a) Prompt

[{"id": 0,
  "content": {
   "text": [],
   "kvpair": {}
  }
 },
 {"id": 1,
  "content": {
   "text": [],
   "kvpair": {}
  }
 }, ...]

GPT-4o
["Grade 9 Physics Midterm Exam Paper", "School", "Shanghai First Middle School", "Class", "Grade 9 (Class 3)", 
"Exam Date", "October 15, 2023", "Name", "He Zhiqiang", "Exam Number", "111045102", "Score", "76"]

Constructing CLGM input

Text annotation

Key annotation
{"Grade": "9",
 "Subject": "Physics",
 "School": "Shanghai First Middle School",
 "Class", "Grade 9 (Class 3)", 
 "Exam Date", "October 15, 2023", 
 "Name", "He Zhiqiang", 
 "Exam Number", "111045102", 
 "Score", "76"}

{"width": 1000, "height": 600, "entities": [
 {"text": "Grade 9 Physics Midterm Exam Paper", "box":["<FILL_1>"]}
 {"text": "School", "box":["<FILL_2>"]},...
 {"text": "Score", "box":["<FILL_12>"]}, 
 {"text": "76", "box":["<FILL_13>"]}]}

[{ "id": 0,
   "content": {
       "text": ["Grade 9 Chemistry Unit 6 Review", "Name:", "Class:", "Nine. 23", "Student ID:", "JHOU, KE-CIANG ", 
         "Exam teacher:", "GONG, JI-RONG", "2019.1.7"],
       "kvpair": {"Grade": "9", 
    "Subject": "Chemistry", 
    "Class": "Nine.23“,  
    "Name": "JHOU, KE-CIANG “}
   }
 }, ...]

In-context
five-shot 

exemplars

Figure 9. The prompt for generating EPHOIE-styled content. (a) Prompt for GPT-4o. (b) Example response from GPT-4o.



wrong
answer

correct
answer

Figure 10. Wrong annotation in SROIE–. The total is annotated as ”7.20”, however, ”7.65” is the correct answer.



Figure 11. Examples of document images generated by RIDGE.



user
Create a paper form content that might contain multiple key-value pairs, ensuring authenticity and diversity. Key-value pairs 
are not limited to one-to-one relationships; they can also use one-to-many checkbox questions. The more diversity, the 
better. Please don't use overly common names like "John Doe."
Please output the form content and annotations using the following JSON format, ensuring the accuracy of the annotations:
{"width": img_width, "height": img_height, "form": [{"id": 0, "text": "entity0's text", "box": [entity0's box], "label": "entity0's 
label", "linking": [entity0's linking]}, ...]}
The box should be the coordinates of the top-left and bottom-right corners, label should be one of "header", "question", 
"answer", or "other". If the label is "other", there won't be any linking. The linking is a list of key-value pairs of all entities 
that have key-value relationships with this entity, with each key-value pair represented as [id_key, id_value]. If there are no 
key-value connections, it should be an empty list.
Please generate a form with approximately 80 entities, with high diversity in content and complex key-value relationships.

Example 1:
{"width": 771, "height": 1000, "form": [{"id": 0, "text": "Date:", "box": [476, 32, 513, 46], "label": "question", 
"linking": [[0, 1]]}, {"id": 1, "text": "3/14/90", "box": [520, 30, 570, 49], "label": "answer", "linking": [[0, 1]]}, ... }

Example 10:
{"width": 754, "height": 1000, "form": [{"id": 0, "text": "001/004", "box": [595, 58, 661, 76], "label": "other", "linking": []}, 
{"id": 1, "text": "05/01/00 10:21", "box": [56, 73, 162, 87], "label": "other", "linking": []}, ... }

Now start creating a new form with approximately 80 entities, using the same format as the example, without adding any 
other unnecessary phrases.

In-context 10-shot exemplar

...

Annotation format explanation

Figure 12. The prompt for one-stage generation of relation-rich visual document.



(b) 2-stage (RIDGE)

(a) 1-stage (GPT-4o)

Figure 13. Qualitative comparison of generated English documents between (a) one-stage generation using GPT-4o and (b) two-stage
generation using RIDGE.



(b) 2-stage (RIDGE)

(a) 1-stage (GPT-4o)

Figure 14. Qualitative comparison of generated Chinese documents between (a) one-stage generation using GPT-4o and (b) two-stage
generation using RIDGE.


	Introduction
	Related Work
	Method
	Content Generation
	Content-driven Layout Generation (CLGM)
	Document Layout Serialization
	Layout Self-Supervised Learning
	Document Rendering

	Hierarchical Structure Learning

	Experiments
	Implementation Details
	Evaluation Setup
	Fine-tuning MLLMs with RIDGE
	Domain-Specific Document Generation
	Applied RIDGE on LayoutLMv3
	Ablation Study
	Interpretability

	Limitation
	Conclusion
	Content Generation Prompts
	Training Setup
	Evaluation Setup
	QA for VIE benchmarks
	Ground Truth Correction for SROIE–
	Implementation Details in Experiments

	More Examples of Generated Images
	Layout & Content Evaluation.
	One-Stage & Two-Stage Generation.
	Visual Information Extraction Methods.

