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A. Future Work
Our work, SOLAMI, represents a preliminary exploration
for building 3D autonomous characters. While it has per-
formed well in comparative experiments, there remains sig-
nificant room for improvement on aspects as follows:
• Input Modality: For dyadic social interaction, using

the user’s body motion and speech as input is suffi-
cient. However, when considering multi-person interac-
tion or interaction involving the environment and objects,
video [16, 47] or dynamic 3D scenes [31] might be a bet-
ter choice;

• Data Collection: Our synthetic dataset, SynMSI, enables
satisfactory user evaluation results. However, collecting
real-time data of actual dyadic interaction could enable
our model to generate more precise and natural body lan-
guage and speech, while also supporting duplex stream-
ing conversations, similar to [5, 46]. Compared to text
and video modalities, the collection of embodied 3D data
is undoubtedly challenging. Potential solutions include:
capturing [9] or learning human behavioral data [6] from
existing video datasets, building immersive interaction
platforms [34] to gather data on human interactions, and
using surrogate control to collect data from human inter-
actions with 3D characters [14];

• Cross Embodiment: Using a unified SMPL-X [30]
model to represent characters’ motion inevitably intro-
duces challenges in cross-embodiment for different char-
acters. While some degree of error and misalignment may
not hinder information exchange in social language in-
teraction, such representations clearly lack generalizabil-
ity for fine-grained tasks (e.g., handshaking, object ma-
nipulation). The challenges of retargeting in 3D human-
related tasks and cross-embodiment in robotics [47] share
similarities, providing opportunities for mutual inspira-
tion and methodological exchange;

• Long-Short Term Design: Although SOLAMI demon-
strates effective modeling for real-time interactions, its
architecture encounters challenges such as computational
redundancy, forgetting, and training difficulties during ex-
tended social interactions. A promising direction [10, 15]
to explore is integrating long-term memory, knowledge,
and skills with short-term real-time interaction. This ap-
proach could ensure interaction quality while reducing
computational overhead and simplifying the training pro-
cess;

• Efficient Learning Method: Although our dataset, Syn-
MSI, tries to collect large-scale motion data, the inher-

ently long-tail distribution [45] of human motions results
in some behaviors having very low occurrence frequen-
cies [19, 21, 41]. In particular, the data volume for signa-
ture actions of 3D characters is inherently limited. While
models like GPT-3 [8] have demonstrated remarkable
few-shot learning capabilities, the data-intensive training
required is currently unsustainable in the field of digital
humans. Therefore, exploring effective learning meth-
ods is essential. Leveraging character-focused knowledge
embedded in existing foundation models [40, 42] or in-
corporating human evaluators [28] to guide the model in
learning new skills from a small number of samples are
promising research directions.

B. More Details of Architecture Design
In this section, we discuss the input and output modalities of
SOLAMI in Appendix B.1, compare the motion represen-
tation in Appendix B.2, and introduce details of our motion
tokenizer and pre-training design in Appendix B.3.

B.1. Input and Output Modalities
Our ultimate goal is to establish a unified behavioral model-
ing system for any character, where input modalities include
a wide range of sensory observations, including vision, au-
dio, and haptics etc., and output modalities represent ac-
tions in the finest possible granularity. However, currently,
we need to balance the ideal with the constraints of exist-
ing data and devices to develop a model that provides an
optimal user experience.

Regarding devices, we employ VR headsets instead of
mobile phones or computers because VR headset enables
a more immersive interactive experience by capturing and
presenting richer information.

In terms of input modalities, while 3D scenes or videos
could serve as input and have some foundational mod-
els [23, 31], collecting corresponding social interaction data
is challenging. For instance, datasets like Ego4D [17] and
Ego-Exo4D [18] capture first-person videos and motion
data but include very limited social interaction content and
no data involving character interaction. Within VR envi-
ronments, the majority of incremental information a char-
acter can observe comes from user’s behaviors that VR de-
vices can capture. Consequently, we chose user motion and
speech as the primary input for SOLAMI.

Similarly, for easy synthetic data generation and model
training, we maintain the same types of output modalities
for the character as for the user’s input. This symmetry en-



Table 1. Quantitative results of pre-training on text-to-motion task. ‘↑’(‘↓’) indicates that the values are better if the metrics are larger
(smaller). The best results are in bold and the second best results are underlined.

ID Body & Hand Repre Backbone Token
Interleaved

Metrics
FID↓ Diversity↑ PA-MPJPE↓ Pred Valid↑

1 bind joints GPT-2 - 1.48 9.03 148.00 0.836
2 bind rotation GPT-2 - 3.44 12.94 143.70 0.813
3 separate rotation GPT-2 Yes 3.00 11.64 117.26 0.676
4 separate rotation GPT-2 No 2.72 14.05 112.53 0.638
5 separate rotation Llama2 No 1.82 10.40 110.23 0.999

Table 2. Quantitative results of Motion VQVAE. ‘↑’(‘↓’) indi-
cates that the values are better if the metrics are larger (smaller).
The best results are in bold.

ID Body & Hand Repre
Motion Metrics

PA-MPJPE↓ FID↓
1 separate joints 87 1.0
2 bind joints 80 1.3
3 separate rotation 88 1.88
4 bind rotation 113 2.34

sures alignment between what the model observes and what
it produces, facilitating a more natural and precise interac-
tive experience.

B.2. Motion Representation Comparison

Common representations of human motion are often based
on 3D keypoints [19, 22, 26], which provide higher preci-
sion compared to methods based on joint rotations. How-
ever, this approach is inconsistent with the driving mech-
anism of 3D engines such as Unity Engine. When the
model generates 3D keypoints, retargeting is necessary to
derive the relative rotation of each joint with respect to its
parent joint. Considering human motion priors, a typical
approach [29] involves fitting an SMPL-X [30] model to
the 3D keypoints using optimization strategies, and subse-
quently retargeting the fitted SMPL-X model to the charac-
ter. However, this process has two main drawbacks:
1. Time-Consuming Fitting Process: The fitting step is

computationally intensive. With optimized methods like
SMPLify [29], achieving an adequate result requires
about 1 second of iteration on a V100 GPU.

2. Fitting Artifacts and Distortion: Inevitable fitting er-
rors can lead to biologically implausible joint rotations,
significantly degrading visual quality.

In our experiments, we observed that while human mo-
tion representation based on 3D keypoints performs well in
terms of motion metrics, as shown in Tab. 1 and Tab. 2, its
visual fidelity is inferior to representation based on joint ro-
tations. To address this, we adopted a cont6d representation
for joint rotations, achieving improved visual outcomes.

B.3. Motion Tokenizer and Pre-training

After processing as described in Appendix B.2, we obtained
a 315-dimensional motion representation. When convert-
ing this motion representation into tokens via the tokeniz-
ers, several issues need to be discussed. Should body and
hand motion features be represented separately? If so, how
should their tokens be handled? Should the tokens for the
body and hand motions be interleaved, or should they be
input as independent sequences in the pre-training stage?

Considering our computational cost, we conducted abla-
tion experiments on the text-to-motion task using the GPT-
2 [33] backbone as the baseline model. Finally, we com-
pared the models under the same settings using Llama2-
7B [37] as the backbone.

As shown in Tab. 2 and Tab. 1, compared to unified rep-
resentations of hand and body motion (marked as “bind”),
the separate representation (marked as ‘separate”) achieves
better performance, particularly with higher precision on
the text-to-motion task (t2m). However, the trade-off is
that the probability of GPT-2 [33] producing outputs that
conform to the expected format (marked as “Pred Valid”)
decreases. However, this issue is mitigated in large part
by using Llama2 [37] as the backbone model. We think
this improvement is due to the differences in the language
models: GPT-2, the relatively smaller language model, has
weaker comprehension of textual instructions. In contrast,
Llama2, trained on extensive corpora, demonstrates signifi-
cantly stronger text understanding capabilities. Moreover,
compared to interleaved tokens (“Yes” for “Token Inter-
leaved”), separate sequence representations (“No” for “To-
ken Interleaved”) achieve better motion metrics. We hy-
pothesize that this is because learning separate sequences
reduces the overall complexity of the motion pre-training
task, thereby improving performance.

Based on the above experimental evaluations, we ulti-
mately select Llama2-7B [37] for its strong text comprehen-
sion capabilities as the LLM backbone. For processing mo-
tion representation, we employ separate motion tokenizers
that convert the motion representation into noninterleaved
token sequences. This configuration is used for the final
instruction fine-tuning stage.



Table 3. Methods of collecting multimodal interaction data.

Methods Input Output

MoCap Human
Motions from

Internet Videos
with SMPLer-X [9]

Motion Captioning
on Internet Videos
with GPT-4o [27]

1-3s: Turn head to the right and look straight ahead,
with a neutral expression; 4-5s: Turn body and look
sideways, with a serious expression, almost no move-
ment; 6-8s: Turn to the left side, smiling while looking
forward.
1-2s: A panda in a combat stance, right hand raised
in a fist, left hand extended, with a serious facial ex-
pression; 3s: Panda’s body tilts to the left side, right
hand clenched in a fist, left hand stretched forward,
eyes looking to the right front; 4-5s: Panda raises
both hands above the head, lifting one leg.

Real Data
Collection from
VR Platforms

Synthetic Data
Generation from
Existing Datasets

C. More Details of Data Generation
In this section, we first discuss several methods for col-
lecting multimodal social interaction data in Appendix C.1.
Then, we introduce the technical details of SynMSI gener-
ation pipeline in Appendix C.2.

C.1. Comparison of Data Collection Methods
From the perspective of data sources, we discuss three
sources: internet videos, Immersive VR platform, and exist-
ing incomplete motion capture datasets, as shown in Tab. 3.
Collecting from Internet Videos. The development of mo-
bile devices has led to an explosion of video content, and re-
searchers naturally expect the model to learn knowledge and
capabilities from internet videos. Many works aim to im-
plicitly learn human capabilities from videos [13, 39], but
for our task, we anticipate obtaining explicit multi-modal
interactive data through various tools [9, 27]. Human mo-
tions can be captured through video motion capture, but
current video motion capture [9] faces challenges such as

occlusion, temporal discontinuity, and long-tail problems,
making it difficult to obtain high-quality motions. Under-
standing and annotating human behaviors in videos can be
achieved using Vision-Language Models (VLM) [25, 27],
and we find that with appropriate post-processing these
annotations are usable. Additionally, there is another is-
sue: the data obtained through this method lacks first-
person view and is often fixed at a third-person view, which
presents challenges in perspective transformation.

Collecting from VR Platforms. Building a VR interaction
platform to directly collect user interaction data is the most
straightforward method. However, two key problems arise:
1) Current VR devices’ body tracking systems [38] can-
not provide ground truth-level data. For instance, existing
VR devices estimate lower body postures instead of captur-
ing with wearable sensors, and tracking becomes unreliable
when hands move beyond the sensor range of VR equip-
ment. 2) Human interaction data differs from 3D character
representations. Specifically, animated characters’ move-



ments tend to be more exaggerated compared to real human
motions, which naturally introduces a data distribution gap.
Collecting from Existing Incomplete Datasets. Due to the
novelty of our task, there is no dataset that perfectly suits
our needs. Common open-source datasets [19, 24, 41] typ-
ically provide semantic annotations for motion sequences
or co-speech gestures. The most cost-effective and conve-
nient approach is to complete these datasets or use them to
synthesize multimodal social interaction datasets. However,
this faces several challenges: How can we ensure the diver-
sity of dialogue content? How can we ensure that synthe-
sized speech and motion are reasonable? Can synthetic data
guarantee user satisfaction? We address these questions in
Sec. 4 and Sec. 6.3 of the main paper. And we will intro-
duce some technical details about data synthesizing latter.

In summary, obtaining data from the internet has high
potential, but current video motion capture technology is
insufficient to realize this potential, and it also involves per-
spective transformation challenges. Data collection from
VR platforms is limited by hardware capabilities and faces
difficulties in replicating character behaviors. Synthesizing
data based on existing datasets represents an optimal choice
when balancing cost and effectiveness.

C.2. Details of SynMSI Generation Pipeline
Motion Post-process Existing motion-text datasets [10, 41]
primarily provide semantic-level text annotations, often
overlooking behavioral details (such as sitting versus stand-
ing positions, orientations, etc.). Considering GPT-4o’s ca-
pability [27] in understanding human behaviors in videos,
as shown in Tab. 3, one approach would be to render all mo-
tions into videos and then use VLM for annotation. How-
ever, for a small research team, the cost of VLM API calls
is relatively high. We propose a compromise strategy: com-
bining multiple text annotations for a single motion and us-
ing GPT-4o [27] to generate a comprehensive, detailed de-
scription. In practice, we find this method to be quite effec-
tive.
Topics Collection. Without topic guidance, conversations
with LLMs often converge to simple, generic content rather
than character-specific, in-depth content [10, 35]. Using
prompts to guide conversation is a common strategy. We
collected topics from the following perspectives:
1. Character-related topics: These topics are difficult to

collect in bulk from the internet and were generated
through GPT-4o [27] brainstorming;

2. News-related topics: Google Trends [2] has compiled
many news topics that people care about in daily life;

3. Daily life topics: Some community websites, such as
Jike, specifically curate such topic content;

4. Topics people are curious about: Common Q&A web-
sites (such as Quora, Zhihu [3]) specifically organize
these topics.

(a) Samantha (b) K-VRC

(c) Batman (d) Banaya

Figure 1. Word cloud visualization of the keywords in the col-
lected characters’ topics.

After collecting these topics, we used LLMs to post-process
them, filtering and organizing them into topics suitable for
character conversation. Topic keywords are shown in Fig. 1.
Task Generation. Beyond daily conversation content, we
also want SOLAMI to learn direct understanding of human
body language and the ability to explicitly follow human
instructions. For this purpose, when synthesizing data, we
set up different tasks in the system prompt:
• common: daily conversation;
• motion understanding: requires users to generate mo-

tions with strong semantic information, and the character
can clearly express understanding of body movements;

• instruction following: requires users to give clear motion
instructions, and the character can output corresponding
instructed movements;

• imitation: requires the character to imitate user’s motion.
Script Generation Methods. Since we are using the chat
version of LLMs, we experimented with and compared
three script generation strategies:
1. Method 1: Round-by-Round completion: Using LLM to

complete and refine the speech and motion text for each
character round by round, which is the method men-
tioned in our main paper.

2. Method 2: Character Agent Dialogue: Similar to the So-
cioMind approach [10], using two LLMs to play two
roles (User and Character), and alternately outputting
speech and motion text, followed by refinement.

3. Method 3: One-shot generation: Generating the en-
tire multi-turn dialogue script at once, then revising the
script round by round based on retrieved motions.

According to our experimental results, Method 1 and
Method 2 produce better results. Although Method 3 ini-
tially generates good scripts, the quality deteriorate af-



ter multiple rounds of modifications during motion-text
database alignment. To produce SynMSI, we randomly al-
ternate between Methods 1 and 2 to generate text scripts.
Interactive Motion. If we only use single-person motions,
our model would lack the capability for two-person interac-
tion. To address this issue, during script generation, when
we retrieve a motion of one person in an interactive motion,
we ask the LLM whether to use the motion of another per-
son from the same interactive motion when generating the
next round of motion text.

D. More Details of Experiments

D.1. LLM Selection

We chose Llama2-7B [37] because at the time of our exper-
iments, end-to-end models with speech pre-training were
scarce, with AnyGPT [43] being one of the few that per-
formed well. Thus we selected the Llama2 series as the
backbone for fair comparison in subsequent experiments.
Readers aiming to achieve the best results can certainly
choose state-of-the-art models as the backbone.

The Llama2-7B-chat model [37] tends to output in-
creasingly longer dialogue content, which for LLM+Speech
methods results in high inference latency from both LLM
and TTS (sometimes exceeding 30 seconds). Therefore,
through post-processing, we truncate the output content to a
maximum of 3 sentences. While truncating output content
somewhat affects user experience, the lower user latency
generally results in a better overall experience.

D.2. Voice Cloning Comparison

Voice cloning / TTS has numerous available products and
open-source models in both industry and academia, each
with different focuses. We aim to achieve the best voice
cloning effect in near real-time conditions. For this purpose,
we compare these software and algorithms: ElevenLabs
Instant Voice Cloning [1], ChatTTS + OpenVoice [4, 32],
XTTS v2 [12], MARS5 [11], and Bark [36]. Among them,
MARS5 [11] uses a diffusion [20] framework and is rela-
tively slow; ElevenLabs [1] produces the best results but has
high API costs and tends to generate speech at a faster pace.
XTTS v2 [12] is a more suitable option, and can achieve a
good balance between speed and quality.

When SOLAMI processes speech, we use the pre-
trained SpeechTokenizer [44] and SoundStorm [7] from
AnyGPT [43]. In SpeechTokenizer [44], one second of
speech is encoded into 400 tokens across 8 layers. We only
select tokens from the first semantic layer (50 tokens in
total) to send to SOLAMI for processing. During Sound-
Storm [7] decoding, we choose 4 to 6 seconds of voice
prompt based on the character and generate the speech with
4 iteration steps.

Figure 2. t-SNE visualization of generated motion and speech.

D.3. Additional Experimental Results
To visually demonstrate the diversity of motion and speech
generated by SOLAMI, we used the speech and motion data
stored on the server in the user study and performed t-SNE
analysis with the features extracted by the encoder in the
tokenizers. Results shown in Fig. 2 indicate the characters
indeed have character-specific behaviors.

The average response latency of SOLAMI’s VR
demo with two H800s is 2.588 s. Specifically,
the response process consists of: motion & speech
tokenization (0.125s), LLM inference (1.926s),
motion & speech decoder (0.187s), audio-to-face
(0.353s), motion retargeting (0.032s), rendering (50
FPS).
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