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8. Overview

We provide more details and experiments of this work in the
supplementary material and organize them as follows:

• Section 9. Comparison with Existing Image Difference
Datasets: We compare our IMG-DIFF dataset with ex-
isting image difference datasets in terms of characteris-
tics and performance, highlighting the advantages of our
dataset.

• Section 10. Prioritizing Quality Over Quantity: We
clarify that our choice to use 13K samples for testing is
motivated by the typical size of task-specific datasets used
for MLLM fine-tuning. Furthermore, by expanding the
dataset to four times its original size, we confirm that the
relationship between data size and performance gains is
not linear.

• Section 11. Expanding Diversity with Lexicons: We
use a lexicon to generate object replacement data and test
the new dataset. The results validate the effectiveness of
this lexicon-based strategy in enhancing data diversity.

• Section 12. Performance Based on Contrastive Chain-
of-Thought: We evaluate our dataset using the Con-
trastive Chain-of-Thought method. The results confirm
that our dataset enables the fine-tuned model to more ac-
curately describe image differences, thereby enhancing
the model’s VQA capability.

• Section 13. Testing on MLLMs at Different Scales:
We test the performance of our IMG-DIFF dataset across
MLLMs of different scales. The results indicate that the
performance gains brought by our dataset are not limited
by scale.

• Section 14. Top-Performing MLLMs in Image Dif-
ference Detection: We evaluate the difference detection
capabilities of top-performing MLLMs, revealing signifi-
cant room for improvement among SOTA models.

• Section 15. Unnatural Images in the Dataset: We re-
move unnatural images from the generated data, fine-tune
the models and evaluate their performance, revealing that
unnatural images do not necessarily degrade model effi-
cacy.

• Section 16. Impact of our Dataset on Spatial Reason-
ing Performance: We evaluate whether our generated
data enhances spatial reasoning capabilities in models,
confirming its effectiveness.

• Section 17. Ablation Studies: We explore the impact of
varying filter intensities on the performance of the final
dataset. As a result, we identify an optimal threshold that
balances data quality and quantity.

• Section 18. Additional Details of Experiments: We

present additional details, including the preprocessing
methods for image pairs, the standard training strategies
for MLLMs, the model selection and rationale behind our
approach, the filtering thresholds applied throughout the
work, and the time consumption for generating data.

• Section 19. The “Object Removal” Exploration: We
generate an extended dataset that focuses on object re-
moval. Additionally, we experimentally validate its ef-
fectiveness.

• Section 20. Examples: We present several examples of
our “object replacement” data and “object removal” data,
highlighting detailed information.

9. Comparison with Existing Image Difference
Datasets

9.1. Characteristics Comparison
Table 4 compares the characteristic differences between
our Img-Diff dataset and other existing image difference
datasets. The comparison focuses on three key aspects: the
“Open-Domain” feature, which refers to whether the dataset
covers unrestricted object categories; the “Automatic” fea-
ture, which indicates whether the dataset can be generated
fully automatically without manual intervention; and the
“Region-Focused” feature, which highlights whether the
dataset emphasizes image differences in specific detail re-
gions rather than overall image differences.

Specifically, CUB-Birds [69] and Spot-the-Diff [26] are
classic examples of traditional datasets where images are
collected from the real world and data samples are gener-
ated through manual annotations. The former consists of
images of various bird species captured in the wild, while
the latter is compiled from street-view images taken at dif-
ferent time points by stationary surveillance cameras. In
addition, image difference datasets can also be generated
using man-made data. For example, Image-Edit-Request
[62] collects image pairs consisting of manually edited im-
ages and their originals from the web, while MagicBrush
[79] employs workers to write editing instructions, which
are then used to generate the required image pairs with im-
age editing techniques. These methods are limited by the
scarcity of real-world data, as well as the resource and fi-
nancial costs associated with manual annotation, resulting
in limited dataset sizes.

To reduce resource consumption and allow for an unlim-
ited data size, some methods have adopted fully automated
generation strategies, such as InstructPix2Pix [6] and MJ-
Bench [11]. These methods eliminate the need for manu-
ally collected data by using generative models and image



Table 4. Comparison of different image difference datasets. “Open-Domain” refers to whether the dataset has a limited or unrestricted
range of object coverage; “Automatic” indicates whether the dataset can be fully generated through automation without human intervention;
and “Region-Focused” describes whether the dataset emphasizes detailed regions rather than the overall image.

Datasets Open-Domain? Automatic? Region-Focused? Size Source Target Text

CUB-Bird [69] × × × 11,788
“This is a grey bird with a
brown and yellow tail wing and
a red head. (Select)”

Spot-the-Diff [26] × × × 13,192 “The people in the parking lot
are no longer there.”

Image-Edit-Request [62] ✓ × × 3,939 “Add a sword and a cloak to
the squirrel.”

MagicBrush [79] ✓ × × 10,388 “Make the man ride a motorcy-
cle.”

InstructPix2Pix [6] ✓ ✓ × UNLIMITED “Convert to a realistic photo.”

MJ-Bench [11] × ✓ × UNLIMITED “Young or Elder. (Select)”

IMG-DIFF ✓ ✓ ✓ UNLIMITED

“The difference is that the
teapot in the right image is
made of glass, whereas the
teapot in the left image is made
of porcelain.”

editing techniques to create image pairs. Instead of re-
lying on human-generated annotations, they deploy high-
performance VLMs or MLLMs to generate annotations. As
a result, the data size is effectively limitless. However, rely-
ing on MLLMs for annotation means that these data only
describe differences across the entire image. Yet, image
pairs generated through image editing involve variations
across multiple detailed regions. If the description only de-
scribes overall image differences, it may miss important de-
tails in fine-grained regions, resulting in inaccuracy.

Unlike the previous datasets, our IMG-DIFF dataset not
only employs an automated generation pipeline but also in-
corporates a segmentation process to identify and capture
detailed regions, which are then targeted for precise annota-
tion. Additionally, we employ extensive filtering processes
to ensure high data quality. These measures enable our

dataset to achieve more comprehensive and accurate differ-
ence captions.

9.2. Performance Comparison
In this section, we compare the performance of our IMG-
DIFF dataset with existing image difference datasets. We
apply two primary dataset configurations for this compari-
son: the first is the CLEVR-Change [51] dataset, containing
67,600 examples. CLEVR-Change generates random 3D
environments with blocks of various shapes, colors, sizes,
and positions, which are subsequently altered to create im-
age difference data. The second configuration combines the
Spot-the-Diff dataset and the Image-Edit-Request dataset,
totaling 13,614 samples.

We conduct experiments on three distinct MLLMs:
LLaVA-1.5-7B, MGM-7B, and InternVL2-8B. Specifically,



Table 5. Performance of image difference datasets CLEVR-
Change, Image-Edit-Request & Spot-the-Diff, and our Img-Diff
dataset on MMVP and 8 MLLM benchmarks.

Model VQAv2 GQA POPE MMB MMBCN

LLaVA-1.5-7B 78.5 62.0 85.9 64.3 58.3
LLaVA-1.5-7B + CLEVR 79.2 63.1 85.7 65.9 59.2

LLaVA-1.5-7B + ImageEdit + Spot 79.3 63.3 86.4 65.8 58.9
LLaVA-1.5-7B + RP(main page) 79.3 62.8 86.4 66.1 59.8

MGM-7B 80.4 62.6 86.0 69.3 58.9
MGM-7B + ImageEdit + Spot 79.7 61.2 86.8 69.1 62.8

MGM-7B + RP(main page) 80.7 62.7 86.2 68.7 59.6

InternVL2-8B-FT 81.8 62.6 87.7 82.5 81.5
InternVL2-8B + ImageEdit + Spot 81.5 62.0 87.0 82.1 79.8

InternVL2-8B + RP(main page) 81.8 62.6 88.0 82.7 81.4

Model MM-Vet SQAI SEED △ MMVP

LLaVA-1.5-7B 30.5 66.8 58.6 - 24.0
LLaVA-1.5-7B + CLEVR 29.8 68.0 61.2 +1.30% 28.7

LLaVA-1.5-7B + ImageEdit + Spot 30.5 68.3 61.9 +1.87% 25.3
LLaVA-1.5-7B + RP(main page) 33.2 68.2 61.7 +3.06% 27.3

MGM-7B 40.8 70.6 63.5 - 40.0
MGM-7B + ImageEdit + Spot 41.7 69.3 61.8 -0.19% 39.3

MGM-7B + RP(main page) 44.1 71.7 63.2 +1.28% 50.7

InternVL2-8B-FT 49.2 96.5 69.5 - 38.7
InternVL2-8B + ImageEdit + Spot 51.1 96.8 68.3 -0.28% 40.7

InternVL2-8B + RP(main page) 52.6 96.6 69.9 +1.01% 43.3

Table 6. Performance of image difference datasets CLEVR-
Change, Image-Edit-Request & Spot-the-Diff, and our Img-Diff
dataset on image difference benchmarks.

Model Spot-the-Diff

BLEU METEOR CIDEr-D ROUGE-L

LLaVA-1.5-7B 8.5 12.0 38.3 30.1
LLaVA-1.5-7B + CLEVR 9.3 12.3 45.2 30.2

LLaVA-1.5-7B + ImageEdit + Spot 9.1 12.9 40.8 30.5
LLaVA-1.5-7B + RP(main page) 9.7 13.0 43.2 30.8

MGM-7B 9.9 12.0 46.3 31.5
MGM-7B + ImageEdit + Spot 7.3 10.3 36.9 28.5

MGM-7B + RP(main page) 10.8 13.1 53.5 33.0

InternVL2-8B-FT 6.6 11.7 26.5 27.3
InternVL2-8B + ImageEdit + Spot 5.7 12.5 24.2 27.8

InternVL2-8B + RP(main page) 8.4 12.8 32.2 28.5

Model Image-Edit-Request

BLEU METEOR CIDEr-D ROUGE-L

LLaVA-1.5-7B 15.1 17.8 60.6 45.2
LLaVA-1.5-7B + CLEVR 15.1 17.8 60.9 45.2

LLaVA-1.5-7B + ImageEdit + Spot 13.0 18.4 56.6 44.7
LLaVA-1.5-7B + RP(main page) 16.2 19.5 60.9 46.7

MGM-7B 16.5 17.7 66.8 44.8
MGM-7B + ImageEdit + Spot 13.9 17.1 55.1 42.5

MGM-7B + RP(main page) 16.6 18.2 68.1 45.7

InternVL2-8B-FT 12.4 14.1 51.5 38.9
InternVL2-8B + ImageEdit + Spot 12.0 16.3 49.0 39.3

InternVL2-8B + RP(main page) 12.5 14.2 56.0 39.4

the first dataset configuration is exclusively tested on
LLaVA-1.5-7B, while the second dataset configuration is
evaluated across all three MLLMs. To assess performance
variation, we incorporate each dataset into MLLMs’ fine-
tuning data respectively, then fine-tune MLLMs and mea-
sure their performance. The results are presented in Table 5

and Table 6.
The tables show that incorporating the CLEVR-Change,

Image-Edit-Request, and Spot-the-Diff datasets into the
fine-tuning of LLaVA-1.5-7B leads to performance im-
provements on MLLM benchmarks and image difference
benchmarks. However, the performance boost from our
Img-Diff dataset is more substantial. Furthermore, intro-
ducing the Image-Edit-Request and Spot-the-Diff datasets
into MGM-7B and InternVL2-8B leads to noticeable per-
formance degradation.

These results could be attributed to the fact that our
dataset’s text is specifically generated in the format for
instruction-following tasks, which provides a greater ben-
efit for MLLMs. In contrast, existing image differencing
benchmarks do not adhere to this format, thereby introduc-
ing noise that adversely affects the performance of MLLMs.
Moreover, our dataset places more emphasis on the image
differences in detailed regions, which enhances the model’s
ability to capture fine-grained details, thereby improving its
overall VQA capabilities and image difference recognition
performance more effectively.

10. Prioritizing Quality Over Quantity

10.1. Discussion on Data Quantity for MLLMs
The quality of data is generally more important than its
quantity in the domain of MLLMs. As demonstrated by
LLaVA-1.5, it uses only a small subset of InstructBLIP’s
data [14], supplemented with a few small-sized VQA
datasets (pre-training data reduced from 129M to 558K,
fine-tuning data reduced from 1.2M to 665K), achieving
impressive performance and significantly surpassing those
of InstructBLIP. Furthermore, a series of MLLM studies
[12, 32, 37, 43] validate that enhancing MLLMs’ perfor-
mance requires high-quality task-oriented data rather than
merely increasing the volume of data.

The data volume for testing in our paper (13K and 35K)
is comparable to that of many mainstream MLLM task-
specific datasets, such as AI2D (12K), DocVQA (10K),
ChartQA (18K), and OKVQA (9K). Despite not incorpo-
rating a large amount of data, our dataset brings appreciable
performance improvement to MLLMs with modest training
costs, such as elevating MGM-7B from 40 points to 50.7 on
the MMVP benchmark, in which the GPT-4V gains a score
of 38.7.

Considering the marginal benefits and training costs
(fine-tuning 7B MLLMs on 4 A100 would take an addi-
tional 2 hours for every extra 50K samples), we aim to
pursue a dataset that is small in quantity but high in qual-
ity. Recently, more works demonstrate the feasibility of
high quality and high data efficiency of visual-text synthe-
sis [74, 83]. Additionally, our paper emphasizes a synthesis
method rather than the dataset itself. We can generate any



amount of Img-Diff data as needed, as our dataset is gener-
ated automatically.

10.2. Expanding Dataset Does Not Yield Linear Per-
formance Gains

In addition to the 13K “object replacement” samples gen-
erated using MSCOCO captions on the main page, we also
apply the same process and filtering thresholds to gener-
ate 34,583 samples using the captions from the LLaVA pre-
training dataset. We compare the MLLM fine-tuned with
the 13K samples to the one fine-tuned with the current four-
fold larger dataset, aiming to explore the mathematical rela-
tionship between dataset expansion and model performance
gains. The results are shown in Table 7 and Table 8.

Table 7. Performance comparison on MMVP and 8 MLLM bench-
marks (including 35K “object replacement” samples).

Model VQAv2 GQA POPE MMB MMBCN

LLaVA-1.5-7B 78.5 62.0 85.9 64.3 58.3
LLaVA-1.5-7B + RP(13K) 79.3 62.8 86.4 66.1 59.8

LLaVA-1.5-7B + RP(13K) + RP(35K) 79.2 63.1 86.2 66.9 59.2

Model MM-Vet SQAI SEED △ MMVP

LLaVA-1.5-7B 30.5 66.8 58.6 - 24.0
LLaVA-1.5-7B + RP(13K) 33.2 68.2 61.7 +3.06% 27.3

LLaVA-1.5-7B + RP(13K) + RP(35K) 33.3 69.0 62.2 +3.40% 31.3

Table 8. Performance comparison on Spot-the-Diff and Image-
Edit-Request (including 35K “object replacement” samples).

Model Spot-the-Diff

BLEU METEOR CIDEr-D ROUGE-L

LLaVA-1.5-7B 8.5 12.0 38.3 30.1
LLaVA-1.5-7B + RP(13K) 9.7 13.0 43.2 30.8

LLaVA-1.5-7B + RP(13K) + RP(35K) 9.8 13.1 45.3 31.0

Model Image-Edit-Request

BLEU METEOR CIDEr-D ROUGE-L

LLaVA-1.5-7B 15.1 17.8 60.6 45.2
LLaVA-1.5-7B + RP(13K) 16.2 19.5 60.9 46.7

LLaVA-1.5-7B + RP(13K) + RP(35K) 16.4 19.1 65.5 46.8

We observe that the average performance gain on the
MLLM benchmarks has become 3.40%, while the perfor-
mance gain from the previous Img-Diff dataset was 3.06%.
On the MMVP benchmark, the model fine-tuned with more
data achieves further improvement, raising its score from
27.3, obtained with 13K samples, to the current score
of 31.3. Furthermore, on Spot-the-Diff and Image-Edit-
Request, the additional data also contributes to further per-
formance gains. These results indicate that a moderate in-
crease in data size can further enhance model performance.

Although adding more data can improve the MLLM’s
performance, it is worth noting that while we quadruple the
dataset, the performance improvements do not increase by a
factor of four. This aligns with the fact that the relationship

between the data size and performance gains is not linear.
As we increase the amount of similar data, the performance
gains eventually reach a maximum limit. For future work,
further investigation can be conducted into the relationship
between different data volumes and performance improve-
ments under the same filtering threshold.

11. Expanding Diversity with Lexicons
On the main page, beyond the intrinsic diversity of ob-
ject names within the caption database, we increase the
temperature of the LLM used for object name substitution
to enhance the randomness of model outputs. This helps
us expand the range of object categories covered by our
dataset. Additionally, we experiment with randomly select-
ing nouns from an object name lexicon to replace original
object names in captions, further enriching the dataset’s di-
versity. This section provides a detailed explanation of this
“Expanding Diversity with Lexicons” method and the ex-
perimental results on LLaVA-1.5-7B.

To construct the object name lexicon, we initially use
the NLTK tool to filter all nouns from the WordNet lexicon.
Next, we categorize each word based on its synsets entries,
labeling them accordingly. Finally, we select object names
classified under “machine,” “living thing,” “natural object,”
“fruit,” “vehicle,” “container,” “clothing,” “fixture,” “appli-
ance,” “furniture,” or “food” and form the final object name
lexicon. The resulting lexicon comprises 5,526 distinct ob-
ject names.

Following this, as described on the main page, we gen-
erate a test dataset using MSCOCO captions. Specifically,
we replace object names in MSCOCO captions randomly
with nouns of the same category from the object name lex-
icon, forming caption pairs that are later used for further
generation and filtering processes. This approach resulted
in 8,930 high-quality “object replacement” samples. We
utilize this data to fine-tune LLaVA-1.5-7B, obtaining the
results shown in Table 9 and Table 10.

Table 9. Performance comparison on MMVP and 8 MLLM bench-
marks (using data generated with lexicons).

Model VQAv2 GQA POPE MMB MMBCN

LLaVA-1.5-7B 78.5 62 85.9 64.3 58.3
LLaVA-1.5-7B + RP(main page) 79.3 62.8 86.4 66.1 59.8

LLaVA-1.5-7B + RP(lexicon) 79.2 62.7 86.3 66.2 59.4

Model MM-Vet SQAI SEED △ MMVP

LLaVA-1.5-7B 30.5 66.8 58.6 - 24.0
LLaVA-1.5-7B + RP(main page) 33.2 68.2 61.7 +3.06% 27.3

LLaVA-1.5-7B + RP(lexicon) 32.2 68.8 61.8 +2.67% 30.0

As shown in Table 9 and Table 10, the current
dataset still provides significant performance improvements
for LLaVA-1.5-7B. Specifically, the fine-tuned MLLM
achieves comprehensive performance improvement across



Table 10. Performance comparison on Spot-the-Diff and Image-
Edit-Request(using data generated with lexicons).

Model Spot-the-Diff

BLEU METEOR CIDEr-D ROUGE-L

LLaVA-1.5-7B 8.5 12.0 38.3 30.1
LLaVA-1.5-7B + RP(main page) 9.7 13.0 43.2 30.8

LLaVA-1.5-7B + RP(lexicon) 8.9 12.2 41.9 29.9

Model Image-Edit-Request

BLEU METEOR CIDEr-D ROUGE-L

LLaVA-1.5-7B 15.1 17.8 60.6 45.2
LLaVA-1.5-7B + RP(main page) 16.2 19.5 60.9 46.7

LLaVA-1.5-7B + RP(lexicon) 13.9 19.4 60.4 46.9

eight MLLM benchmarks, with improvement levels com-
parable to those on the main page, resulting in an average
performance increase of 2.67%. Besides, the current dataset
also improves the performance of LLaVA-1.5-7B on image
difference benchmarks.

By using a lexicon for object name replacement, we
can more effectively enhance the diversity of our Img-Diff
dataset. Specifically, we can increase the number of noun
samples included in the lexicon, as well as perform multi-
ple rounds of noun replacement on the same caption. As a
result, the quality of our data can be further improved.

12. Performance Based on Contrastive Chain-
of-Thought

In addition to the standard VQA evaluation, we also as-
sess our IMG-DIFF dataset using the Contrastive Chain-of-
Thought (CoCoT [77]) method. This evaluation method in-
volves prompting the model with the instruction, “Please
identify the similarities and differences between these two
images,” and requiring the MLLM to pinpoint the differ-
ences before it answers the final VQA question. The differ-
ences identified are then used as context-enhanced text to
support its own response to the VQA task.

Table 11. Results on MMVP using the CoCoT method.

Model MMVP

w/ CoCot w/o CoCot

LLaVA-1.5-7B 24.0 22.0
LLaVA-1.5-7B + RP 27.3 29.0

We test the original LLaVA-1.5-7B and our fine-tuned
model on the MMVP benchmark using CoCoT. As shown
in Table 11, the original model’s score drops from 24 to
22, while the score of the model fine-tuned with our data
rises from 27.3 to 29. This indicates that, after fine-tuning
without IMG-DIFF data, the MLLM demonstrates an en-
hanced ability to recognize image differences and can gen-
erate more accurate descriptive information to support VQA

tasks.

13. Testing on MLLMs at Different Scales

On the main page, we primarily conduct experiments on
MLLMs with a 7B scale. In this section, we will explore the
impact of our dataset on models of different sizes. Specifi-
cally, we fine-tune LLaVA-1.5-13B and InternVL2-1B, rep-
resenting a larger and a smaller model. We then test these
models on both MLLM benchmarks and image difference
benchmarks.

Table 12. Performance of “object replacement” data on LLaVA-
1.5-13B and InternVL2-1B (evaluated on MMVP and 8 MLLM
Benchmarks).

Model VQAv2 GQA POPE MMB MMBCN

LLaVA-1.5-13B 80.0 63.3 85.9 67.7 63.6
LLaVA-1.5-13B + RP 80.3 64.1 86.6 69.2 63.2

InternVL2-1B-FT 77.3 60.2 86.6 68.6 60.7
InternVL2-1B + RP 77.4 60.2 87.1 69.0 60.7

Model MM-Vet SQAI SEED △ MMVP

LLaVA-1.5-13B 35.4 71.6 61.6 - 24.7
LLaVA-1.5-13B + RP 37.4 71.7 62.9 +1.49% 32.0

InternVL2-1B-FT 31.9 88.5 61.4 - 16.0
InternVL2-1B + RP 33.4 88.7 61.7 +0.84% 18.0

Table 13. Performance of “object replacement” data on LLaVA-
1.5-13B and InternVL2-1B (evaluated on Spot-the-Diff and
Image-Edit-Request).

Model Spot-the-Diff

BLEU METEOR CIDEr-D ROUGE-L

LLaVA-1.5-13B 9.7 12.3 44.6 31.0
llava-1.5-13b + RP 9.9 13.1 45.8 31.4

InternVl2-1B-FT 6.5 11.4 24.7 26.5
InternVl2-1B + RP 6.9 11.5 25.7 26.5

Model Image-Edit-Request

BLEU METEOR CIDEr-D ROUGE-L

LLaVA-1.5-13B 16.6 18.0 62.9 46.2
llava-1.5-13b + RP 15.9 20.1 65.3 47.2

InternVl2-1B-FT 7.3 11.6 28.7 35.3
InternVl2-1B + RP 8.4 12.1 30.3 37.4

Table 12 and Table 13 show that our dataset remains
effective on LLaVA-1.5-13B and InternVL2-1B, deliver-
ing comprehensive performance improvements across eight
MLLM benchmarks and the image difference benchmarks.
This demonstrates the versatility of our dataset, proving its
capability to enhance model performance not only for 7B-
scale models but also for smaller or larger models.



14. Top-Performing MLLMs in Image Differ-
ence Detection

In this section, we use our generated data to construct an
evaluation benchmark to assess the image difference de-
tection capabilities of top-performance MLLMs. Specifi-
cally, we compile a new evaluation set consisting of 500
samples (drawn from the version of our IMG-DIFF dataset
not used for training) and use our dataset’s annotations as
the ground truth. We evaluate the ability of two leading
MLLMs, InternVL2.5-8B-MPO [73] and Qwen2-VL-7B-
Instruct [71], to identify fine-grained differences in specific
regions of image pairs. To quantify their performance, we
employ InternLM2.5 [7] to assess the alignment between
the models’ outputs and the annotations, scoring the results
based on similarity (on a scale of 0 to 3, with a maximum
possible total score of 1500).

Table 14. Performance scores of top-performing MLLMs in image
difference detection.

InternVL2.5-8B-MPO Qwen2-VL-7B-Instruct

Dtest500 836 695

InternVL2-8B InternVL2-8B + RP(main page)

Dtest500 620 727

The results, as shown in Table 14, reveal that both two
top-performing MLLMs struggle to recognize fine-grained
differences, achieving scores of only 836 and 695, respec-
tively. This underscores that current SOTA MLLMs have
not been specifically optimized for image difference detec-
tion tasks, indicating significant room for improvement in
this capability.

Additionally, we evaluate the performance of InternVL2-
8B and its fine-tuned variant (trained on our IMG-DIFF
dataset) on the newly constructed evaluation set. The re-
sults, presented in Table 14, show that our dataset effec-
tively enhances the models’ performance on image differ-
ence detection, highlighting its practical value for advanc-
ing this capability.

15. Unnatural Images in the Dataset

Due to the limitations in the generation quality of SDXL
and Prompt2Prompt, the production of some unnatural im-
ages is inevitable during the creation of our IMG-DIFF
dataset. Nevertheless, our work goes beyond the current
dataset, emphasizing a novel data synthesis method. Our
pipeline allows for the substitution of more advanced text-
to-image models and image editing techniques to improve
image quality. Additionally, we can also propose the incor-
poration of filters specifically targeting unnatural images to
mitigate their impact.

To investigate the influence of unnatural images on the
performance of the fine-tuned models, we conduct a new ex-
periment. We filter and remove unnatural images from the
13K IMG-DIFF dataset and subsequently fine-tune LLaVA-
1.5-7B on the remaining data to observe the remaining per-
formance (we have open-sourced the new filter in our code
repository). Specifically, we deploy InternVL2.5-8B to
quantify unnatural images in IMG-DIFF, identifying 28% as
unnatural. The model is then trained on the filtered dataset,
and the results are presented in Table 15 and Table 16.

Table 15. Performance of LLaVA-1.5-7B fine-tuned on IMG-
DIFF after removing unnatural images (evaluated on MMVP and
8 MLLM Benchmarks). “w/o UNI” means “fine-tuning without
unnatural images”.

Model VQAv2 GQA POPE MMB MMBCN

LLaVA-1.5-7B 78.5 62.0 85.9 64.3 58.3
LLaVA-1.5-7B + RP w/o UNI 78.5 62.0 87.0 67.0 59.4

LLaVA-1.5-7B + RP(main page) 79.3 62.8 86.4 66.1 59.8

Model MM-Vet SQAI SEED ∆ MMVP

LLaVA-1.5-7B 30.5 66.8 58.6 - 24.0
LLaVA-1.5-7B + RP w/o UNI 31.1 68.6 60.3 +1.87% 24.3

LLaVA-1.5-7B + RP(main page) 33.2 68.2 61.7 +3.06% 27.3

Table 16. Performance of LLaVA-1.5-7B fine-tuned on IMG-DIFF

after removing unnatural images (evaluated on Spot-the-Diff and
Image-Edit-Request). “w/o UNI” means “fine-tuning without un-
natural images”.

Model Spot-the-Diff

BLEU METEOR CIDEr-D ROUGE-L

LLaVA-1.5-7B 8.5 12 38.3 30.1
LLaVA-1.5-7B + RP w/o UNI 8.6 12.8 38.3 30.3

LLaVA-1.5-7B + RP(main page) 9.7 13.0 43.2 30.8

Model Image-Edit-Request

BLEU METEOR CIDEr-D ROUGE-L

LLaVA-1.5-7B 15.1 17.8 60.6 45.2
LLaVA-1.5-7B + RP w/o UNI 15.4 18.0 59.6 45.6

LLaVA-1.5-7B + RP(main page) 16.2 19.5 60.9 46.7

Surprisingly, after removing the unnatural images and
fine-tuning LLaVA-1.5-7B again, we observe that the per-
formance of the resulting model is inferior to that of the
model fine-tuned with unnatural images. This finding sug-
gests that the presence of unnatural images does not nec-
essarily degrade model performance and may, in fact, con-
tribute positively to the training process.

16. Impact of our Dataset on Spatial Reasoning
Performance

Spatial changes constitute a significant aspect of object
variations in images [55]. In this section, we investigate
whether our dataset can effectively enhance models’ spatial
reasoning capabilities. To this end, we newly evaluate our



Table 17. The impact of different filtering thresholds on the performance of our dataset.

Threshold VQAv2 GQA POPE MMB MMBCN MM-Vet SQAI SEED △
LLaVA-1.5-7B 78.5 62.0 85.9 64.3 58.3 30.5 66.8 58.6 -

(1) IS 0.9-0.98 + BITM 0.3 + CS 0.9 + CITM 0.3 79.1 62.3 86.0 66.8 59.5 32.7 66.6 61.6 +2.42%
(2) IS 0.9-0.98 + BITM 0.35 + CS 0.9 + CITM 0.3 79.1 62.2 85.9 66.7 59.5 32.7 67.1 61.9 +2.52%
(3) IS 0.9-0.98 + BITM 0.35 + CS 0.85 + CITM 0.4 79.3 62.8 86.4 66.1 59.8 33.2 68.2 61.7 +3.06%
(4) IS 0.85-0.98 + BITM 0.35 + CS 0.85 + CITM 0.4 79.2 62.7 86.3 66.2 57.4 32.2 68.8 61.8 +2.24%

models on SpatialEval [70], a benchmark specifically de-
signed to assess spatial reasoning abilities. Our evaluation
focuses on two of its subsets: (1) Spatial-Map, which ex-
amines the understanding of spatial relationships between
objects in map-based scenarios, and (2) Spatial-Real, which
assesses real-world spatial understanding. The results are
presented in Table 18.

Table 18. Performance comparison on SpatialEval.

LLaVA-1.5-7B LLaVA-1.5-7B + RP(main page)

Spatial-Map-ACC 0.26 0.29
Spatial-Real-ACC 0.39 0.41

MGM-7B MGM-7B + RP(main page)

Spatial-Map-ACC 0.38 0.41
Spatial-Real-ACC 0.42 0.46

InternVL2-8B InternVL2-8B + RP(main page)

Spatial-Map-ACC 0.47 0.49
Spatial-Real-ACC 0.44 0.52

As shown in Table 18, our findings reveal that IMG-
DIFF indeed contributes to improving models’ spatial rea-
soning performance. Moreover, it is important to note
that our current data synthesis pipeline is not explicitly de-
signed to incorporate spatial transformations. In the future
work, we will integrate data synthesis strategies that specif-
ically address spatial transformations, further enhancing the
dataset’s utility for spatial reasoning tasks.

17. Ablation Studies

To investigate the impact of filtering thresholds on our data
performance, we set different filtering thresholds and gen-
erate various versions of our “object replacement” dataset.
We then finetune multiple versions of LLaVA-1.5-7B using
these datasets and evaluate their performance on commonly
used MLLM benchmarks. Specifically, the threshold for
the Image Similarity Filter of the Difference Area Genera-
tor is abbreviated as IS (Image Similarity). The threshold
for the Image-Text Matching Filter of the Difference Area
Generator is abbreviated as BITM (Bounding Box Image-
Text Matching). The threshold for the Caption Similarity
Filter of the Difference Captions Generator is abbreviated
as CS (Captions Similarity). The threshold for the Image-
Text Matching Filter of the Difference Captions Generator

is abbreviated as CITM (Captions Image-Text Matching).
The evaluation results are shown in Table 17.

Image Similarity (IS) Based on Table 17, Model (3) ad-
justs the IS threshold from 0.9-0.98 to 0.85-0.98 compared
to Model (4), reducing the filtering intensity for the simi-
larity of image pairs. This adjustment leads to a significant
performance decline, indicating that the similarity of image
pairs has a substantial impact on data quality. When the
similarity is low, the data generation process may introduce
more ineffective instances, as segmentation could generate
more areas unrelated to the valid objects (i.e., the replaced
or replacing objects).

Bounding Box Image-Text Matching (BITM) Model
(2), compared to Model (1), increases the BITM threshold,
meaning that when filtering to obtain valid bounding boxes,
only those more likely to contain valid objects are retained.
After raising the threshold, slight improvements in model
performance are observed, which demonstrates that only
bounding boxes more related to the replaced or replacing
objects should be retained.

Captions Similarity (CS) and Captions Image-Text
Matching (CITM) Model (3) increases both the CS
threshold and the CITM threshold compared to Model (2).
Raising the CS threshold implies a greater filtering strength
for similar captions, which means that if the two objects cor-
responding to the same bounding box coordinate in an im-
age pair are similar, the bounding box will be filtered out.
As for the CITM threshold, increasing the CITM thresh-
old aims to enhance the alignment between the captions and
the objects being described. After raising both the CS and
CITM thresholds, the model’s performance shows a signif-
icant improvement.

Based on Table 17, it can be concluded that the stronger
the filtering intensity, the better our dataset’s effectiveness.
However, due to the increased filtering intensity resulting in
a reduced number of final instances, we choose the settings
of Model (3) as our optimal threshold to ensure a sufficient
number of generated instances. In our future work, we will
expand the data sources to generate more pairs of similar
images and then evaluate the effects of data obtained with
higher filtering intensity.



18. Additional Details of Experiments
18.1. Preprocessing of image pairs before inputting

into MLLMs during training and inference
The MLLMs selected in our paper (LLaVA-1.5, MGM, In-
ternVL2) only support single-image input. Therefore, our
image pairs need to be horizontally concatenated before be-
ing fed into MLLMs’ image encoder. Specifically, we hor-
izontally concatenate the images in pairs and add a vertical
black dividing line, 20 pixels wide, between the images.

18.2. Training Process for MLLMs
The training process for advanced MLLMs, including
LLaVA-1.5, MGM and InternVL2, typically involves two
stages: the pre-training stage and fine-tuning stage. Dur-
ing the pre-training stage, the MLLMs keep the backbone
LLM and the vision encoder frozen and zero-initialize the
learnable projector which is used for semantic mapping and
cross-modality alignment. Only the projector is trained us-
ing the pre-training dataset. In the fine-tuning stage, we un-
freeze the backbone LLM and fine-tune both the backbone
LLM and the learnable projector using the visual instruction
tuning dataset. Specifically, the pre-training dataset is usu-
ally an image captioning dataset, while the visual instruc-
tion tuning dataset typically consists of VQA datasets for
various tasks. Thus, our Img-Diff dataset is integrated into
the visual instruction tuning dataset during the fine-tuning
stage and used together with the original dataset to fine-tune
the MLLMs.

18.3. Model Selection
18.3.1. Overview
The models used in our project are among the best-
performing ones identified for the tasks assigned to them.
Besides, they are interchangeable. Therefore, if better
model options become available, researchers can replace the
current models with those that offer superior performance to
achieve a more effective dataset.

18.3.2. Selection of the Semantic Segmentation Model
In our project, we need to use a semantic segmentation
model to identify regions containing objects in images. To
ensure a diverse range of object categories is covered, we
opt for models like SAM [30] instead of traditional seman-
tic segmentation models. Furthermore, to reduce time con-
sumption, we select FastSAM, one of the most efficient and
effective models within the SAM-like category, as our seg-
mentation model.

18.3.3. Model Size
Considering the device limitation and time consumption,
our paper utilizes the LLM Vicuna-1.5-13B [13] for object
name replacement in the image pairs generation process.

For semantic segmentation in the Difference Area Gener-
ator, the FastSAM-x model is employed. For the CLIP
model, we choose “clip-vit-base-patch32”, and for the BLIP
model, we select “blip-itm-large-coco”. In the Difference
Captions Generator, we use the MLLM LLaVA-NEXT-
13B to generate content captions and difference captions.
These models are interchangeable. When resources allow,
researchers can substitute them with higher-performance
models to achieve datasets with improved performance.

18.4. Filtering Thresholds
During the generation process of “object replacement” data,
we employ multiple filtering operations. In this subsection,
we will outline the filtering thresholds we use.

In the Difference Area Generator, we use FastSAM
to perform semantic segmentation on images and obtain
bounding box information for regions where objects might
be present. To ensure we gather a sufficient number of
candidate regions, we set the confidence score threshold to
0.05, which means that we consider a region to contain ob-
jects when its confidence score is greater than 0.05. Addi-
tionally, to prevent overlapping regions, we set the Intersec-
tion over Union (IoU) threshold to 0.5.

At the beginning stage of the Difference Area Genera-
tor, before using FastSAM for segmentation, we employ the
Image Similarity Filter to retain only those with similarity
between 0.9 and 0.98. This ensures that the image pairs are
highly similar but not identical.

In the Difference Detector stage of the Difference Area
Generator, after cropping sub-images based on the bound-
ing box information, we use the Image Similarity Filter to
filter the sub-image pairs and consider them to be different
only when the similarity score is less than 0.85.

In the mid-stage of the Difference Area Generator, af-
ter performing sub-image cropping based on the bounding
box information, we use the Image-text Matching Filter to
determine whether these sub-images contain valid objects.
When the score exceeds 0.35, we consider the sub-image
to contain valid objects, and the bounding box is deemed
effective.

In the Difference Area Generator, after obtaining all ef-
fective bounding boxes, we use the IoU method to filter out
the overlapping ones. We set the IoU threshold to 0.5, re-
taining only the bounding boxes with a higher degree of
difference for similar positions.

In stage 1 of the Difference Captions Generator, after
cropping the images into sub-images and generating content
captions, we use the Image-text Matching Filter to evaluate
the matching degree between the sub-images and the cap-
tions. We only consider a caption to be correct if the image-
text matching score exceeds 0.4.

In stage 1 of the Difference Captions Generator, we use
the Captions Similarity Filter to determine whether the two



glass → black bowl brown baseball glove → brown leather basketball framed picture → white vase with pink flowers

The cat is sitting on the laptop. Fish in bear’s hand. The surfboard is orange.

Figure 7. Three “object removal” examples.
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Figure 8. An overview of the generation steps for “object removal” data.

content captions of an image pair, describing the regions of
the same bounding box, are different. We use CLIP to ob-
tain text features for the two captions and then calculate the
cosine similarity between them. When the cosine similarity
is below 0.85, we consider the two captions to be different.

Setting the filtering intensity too high may lead to a re-
duced number of remaining samples. To ensure that the
dataset still has enough samples after filtering, we outline
adjustable thresholds as described above. As mentioned in
Section 17, higher filtering intensity typically results in bet-
ter model performance. Therefore, researchers may con-
sider expanding the data sources and increasing the filtering
intensity to improve dataset performance.

18.5. Resource and Time Consumption
With four NVIDIA A100 GPUs, it took 4.5 days to syn-
thesize 118K high-quality image pairs. The subsequent fil-
tering and description-generating processes took approxi-
mately two days in total.

19. The “Object Removal” Exploration
19.1. Overview
On the main page, we generate pairs of similar images fo-
cusing on object replacement. Their bounding box regions
generally contain objects. However, the ability to determine
the object’s presence is also crucial. Thus, we generate an-
other set of image pairs where the difference lies in the pres-
ence or absence of objects, to enhance the model’s ability to
determine object presence. We refer to these image pairs as
“exist-absent pairs” and the data as “object removal” data.

19.2. Generation Process

19.2.1. Workflow

“Object removal” involves erasing a specific object from an
image and then merging the edited image with the original
to form an exist-absent pair. The detailed workflow is as fol-
lows: first, FastSAM is used to segment the image, which
provides a set of bounding boxes and masks. Next, an Im-
age Similarity Filter is applied to filter the bounding boxes
and accompanying masks, keeping only those that contain
objects. Then, we use the text-to-image generative model
SDXL-turbo[57] to inpaint the images with the remaining
masks, erasing specific objects from the images and gener-
ating exist-absent pairs. Next, we use an MLLM to describe
the removed object for each exist-absent pair, and a filter is
employed to verify the accuracy of the description. Finally,
we draw red boxes on images based on the bounding box
information, and then the object descriptions are converted
into multiple-choice questions, such as: “which image has
the object related to ‘DESCRIPTION’ within the red bound-
ing box? A. the left image B. the right image.” Here, DE-
SCRIPTION refers to the description of the erased objects.
After all processing and filtering, we obtain 5,773 pieces of
“object removal” data. The general framework is shown in
Figure 8.

19.2.2. Image Similarity Filter

In the current process, the function of the Image Similarity
Filter is to filter out the bounding box regions that do not
contain objects. For each image, we need its correspond-
ing image in the image pair generated in Section 3.2 to de-



termine whether its bounding box regions contain objects.
Since the image pairs are generated by replacing objects, the
difference areas between the two images are highly likely to
be the regions containing valid objects. Therefore, for each
bounding box, we crop the sub-images from image A (the
current image) and image B (the other image in the pair),
and then calculate the similarity of these two sub-images.
When the similarity is below 0.9, we consider these two
sub-images to be different, indicating that the bounding box
region contains an object.

19.2.3. Erase Objects
We use the generative model SDXL-turbo[57] to erase ob-
jects based on the masks obtained during segmentation. The
prompt is “background, nothing, 8k.” After inpainting, the
object in the masked regions is erased, while the rest of the
image remains unchanged. Hence, we obtain exist-absent
pairs.

19.2.4. MLLM Captioning
We use the MLLM LLaVA-NEXT to generate descriptions
for the erased objects. Specifically, we provide the MLLM
with the bounding box coordinates and ask it to describe
the corresponding area in the original image. Subsequently,
we crop the exist-absent pairs based on the bounding box
information and then use an Image-Text Matching Filter to
assess the matching degree between the sub-images and the
descriptions. If the matching score between the sub-image
containing objects and its description is greater than 0.35,
and the matching score between the sub-image not contain-
ing objects and its description is less than 0.2, we consider
the description to be accurate and the exist-absent pair to be
valid.

19.3. Evaluation
We merge the “object removal” data with the “object re-
placement” data, making our dataset focus on both ob-
ject changes and object presence. To test the performance
changes of LLaVA-1.5-7B after adding “object removal”
data, we incorporate this combined data into the original
visual instruction tuning dataset of the MLLM and conduct
fine-tuning. Then, we evaluate the fine-tuned model on im-
age difference benchmarks and eight MLLM benchmarks,
similar to what is presented on the main page.

In the tables, “RM” represents “object removal” data.

19.3.1. Results on MLLM Benchmarks
Table 19 shows the performance of LLaVA-1.5-7B fine-
tuned with additional “object removal” data on commonly
used MLLM benchmarks. With the assistance of “object re-
moval” data, LLaVA-1.5-7B achieves further improvements
across various benchmarks compared to the model that only
uses “object replacement” data, with an average increase of
3.91%.

Table 19. Performance comparison on 8 MLLM benchmarks (in-
cluding “object removal” data).

Model VQAv2 GQA POPE MMB MMBCN

LLaVA-7B 78.5 62.0 85.9 64.3 58.3
LLaVA-7B + RP 79.3 62.8 86.4 66.1 59.8

LLaVA-7B + RP + RM 79.2 62.9 86.8 67.9 61.3

Model MM-Vet SQAI SEED △ MMVP

LLaVA-7B 30.5 66.8 58.6 - 24.0
LLaVA-7B + RP 33.2 68.2 61.7 +3.06% 27.3

LLaVA-7B + RP + RM 33.1 68.8 61.9 +3.91% 28.7

Table 20. Results on image difference benchmarks (including “ob-
ject removal” data).

Model Spot-the-Diff

BLEU METEOR CIDEr-D ROUGE-L

LLaVA-1.5-7B 8.5 12.0 38.3 30.1
LLaVA-1.5-7B +RP 9.7 13.0 43.2 30.8

LLaVA-1.5-7B +RP +RM 9.8 13.0 46.5 31.5

Model Image-Edit-Request

BLEU METEOR CIDEr-D ROUGE-L

LLaVA-1.5-7B 15.1 17.8 60.6 45.2
LLaVA-1.5-7B +RP 16.2 19.5 60.9 46.7

LLaVA-1.5-7B +RP +RM 16.8 18.6 63.9 45.7

19.3.2. Results on Image Difference Benchmarks
Table 20 shows the performance of LLaVA-1.5-7B fine-
tuned with our “object removal” data on image difference
benchmarks. With “object removal” data, LLaVA-1.5-7B
shows further improvements in its performance on both
the MMVP benchmark and the Spot-the-Diff benchmark,
surpassing the results achieved with “object replacement”
data alone. Besides, its scores fluctuate on the Image-Edit-
Request benchmark.

19.3.3. Further Analysis
The results indicate that the “object removal” data has a
comprehensive positive impact on LLaVA-1.5-7B, leading
to performance improvements in both MLLM benchmarks
and image difference benchmarks. However, during our
analysis of sample quality, we notice that some of the gener-
ated “object removal” samples exhibit subpar image quality,
with certain image pairs showing inadequate object removal
effects. In light of this, employing a more robust inpainting
model or applying additional filters to enhance the quality
of these image pairs could further optimize the performance
of this dataset.



20. Examples

{"bbox": [0.63, 0.35, 0.77, 0.44], 

"conversations": [{"from": "human", "value": "Analyse the left image and the right 

image (separated by the black vertical bar). Which image has the object related to \"A red 

frisbee.\" within the red bounding box?\nA. the left image\nB. the right image\nAnswer 

with the option's letter from the given choices directly."}, 

{"from": "gpt", "value": "B"}], 

"path": "./inpaint/2_17718_img0_0_2"}

{"conversations": [{"from": "human", "value": "Analyse the left image and the right 

image (separated by the black vertical bar). What is the difference between the red 

bounding box area in each image? Answer the question in a few concise sentences."}, 

{"from": "gpt", "value": "The left image shows a truck in the foreground with cows in 

the background, while the right image shows a tractor in the foreground with cows in the 

background. The red bounding box in the left image highlights the front of a truck, while 

the red bounding box in the right image highlights a yellow tractor. The difference is the 

type of vehicle highlighted in the bounding boxes."}], 

"bbox": "[0.86, 0.41, 0.98, 0.54]", 

"captions1": "The front of a truck.", 

"captions2": "A yellow tractor.", 

"path": "./filtered_new_edit_data/2_2311_0"}

{"conversations": [{"from": "human", "value": "Analyse the left image and the right 

image (separated by the black vertical bar). What is the difference between the red 

bounding box area in each image? Answer the question in a few concise sentences."}, 

{"from": "gpt", "value": "The left image shows a woman holding a black camera, while 

the right image shows the same woman holding a stack of white plates. The difference is 

that the woman is now holding plates instead of a camera."}], 

"bbox": "[0.40, 0.07, 0.64, 0.18]", 

"captions1": "A black camera.", 

"captions2": "A stack of white plates.", 

"path": "./filtered_new_edit_data/1_10505_0"}

Figure 9. Examples of “object replacement” data, including the image pair and the text content in JSON format.

{"bbox": [0.63, 0.35, 0.77, 0.44], 

"conversations": [{"from": "human", "value": "Analyse the left image and the right 

image (separated by the black vertical bar). Which image has the object related to \"A red 

frisbee.\" within the red bounding box?\nA. the left image\nB. the right image\nAnswer 

with the option's letter from the given choices directly."}, 

{"from": "gpt", "value": "B"}], 

"path": "./inpaint/2_17718_img0_0_2"}

{"conversations": [{"from": "human", "value": "Analyse the left image and the right 

image (separated by the black vertical bar). What is the difference between the red 

bounding box area in each image? Answer the question in a few concise sentences."}, 

{"from": "gpt", "value": "The left image shows a truck in the foreground with cows in 

the background, while the right image shows a tractor in the foreground with cows in the 

background. The red bounding box in the left image highlights the front of a truck, while 

the red bounding box in the right image highlights a yellow tractor. The difference is the 

type of vehicle highlighted in the bounding boxes."}], 

"bbox": "[0.86, 0.41, 0.98, 0.54]", 

"captions1": "The front of a truck.", 

"captions2": "A yellow tractor.", 

"path": "./filtered_new_edit_data/2_2311_0"}

Figure 10. An example of “object removal” data, including the image pair and the text content in JSON format.
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