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1. Qualitative Results
We provide test results of various methods from the main
paper, along with a comparative web demo. The demo al-
lows users to compare different methods and adjust bright-
ness, contrast, and saturation to achieve better compara-
tive results. Additionally, we provide a web demo based
on different denoising strengths, allowing users to explore
the results of spatial and temporal denoising and compare
the detail preservation capabilities under varying denoising
levels. Please refer to these demos from our project page:
https://srameo.github.io/projects/levd.

2. More Quantitative Results
We provide the LPIPS [17] and SSIM [15] scores of differ-
ent methods on the CRVD benchmark in Tab. 3.

3. More Ablative Experiments
As summarized in Tab. 1 (top and middle), we also tried us-
ing ResNet-101 [5] and SDXL VAE [8] as the backbone as
well as RAFT [13] and PWC-Net [11] as the motion esti-
mator. These ablations do not offer too much signal other
than that our initial choices for these are reasonable.

Our experimental results show that while RAFT [13]
offers slightly better performance (PSNR improvement of
0.17, SSIM improvement of 0.0057), its runtime is more
than 5 times that of SpyNet [9] (24.53 ms vs 4.56 ms) as
shown in Tab. 2. PWC-Net [11], though faster than RAFT,
is still 3 times slower than SpyNet and performs slightly
worse than our method. Therefore, we chose SpyNet as
our optical flow estimator, primarily considering the opti-
mal balance between performance and speed.

For the backbone selection, as shown in Tab. 1, Con-
vNext [7] outperforms ResNet-101 [5] and SDXL VAE [8]
across all metrics. ResNet-101 shows a decrease of 0.17 in
PSNR, 0.0024 in SSIM, and an increase of 0.0109 in LPIPS;
while SDXL VAE exhibits an even more significant perfor-
mance drop. These results confirm the rationale behind our
choice of ConvNext as the backbone.

As shown in Fig. 1, omitting H.264 transcoding from
the data pipeline results in numerous temporal compression
artifacts in the denoising results. These artifacts primarily
manifest as inconsistencies between video frames, signifi-
cantly degrading the final visual quality.

As shown in Fig. 2, the denoising results with different
anchor frame choices are similar though the noise level of
the anchor frames differs a lot.

PSNR delta SSIM delta LPIPS delta

ConvNext - Ours 36.04 − 0.9472 − 0.0763 −
ResNet-101 35.87 - 0.17 0.9448 - 0.0024 0.0872 + 0.0109

SDXL VAE 35.79 - 0.25 0.9439 - 0.0033 0.0949 + 0.0186

SpyNet - Ours 36.04 − 0.9472 − 0.0763 −
RAFT 36.22 + 0.17 0.9529 + 0.0057 0.0801 + 0.0038

PWC-Net 35.96 - 0.09 0.9464 - 0.0007 0.0919 + 0.0156

Table 1. Additional experiments on the CRVD (sRGB) dataset.

Flow + Align P(·; θ) Temp. Denoise Spat. Denoise

SpyNet - Ours 4.56 ms 1.15 ms 6.20 ms 2.37 ms
RAFT 24.53 ms 1.19 ms 6.17 ms 2.32 ms
PWC-Net 14.29 ms 1.22 ms 6.13 ms 2.36 ms

Table 2. Runtime for each denoising stage at a 720p resolution.

Input w/ H.264 w/o H.264

Figure 1. Our approach w/ and w/o H.264 augmentation.

Anchor Frame 2 Denoised (Anchor Frame 2) Denoised (Anchor Frame 215)
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Figure 2. Denoising results with different anchor frames choices.

https://srameo.github.io/projects/levd


Figure 3. Screenshots of our interactive web demos. Top: a comparison interface that allows users to examine and compare results
from different denoising methods side-by-side. Bottom: a control interface that enables users to interactively adjust spatial and temporal
denoising strengths to explore the trade-off between detail preservation and noise reduction.
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ISO 1600 ISO 3200 ISO 6400 ISO 12800 ISO 25600 Overall Speed

SSIM rank SSIM rank SSIM rank SSIM rank SSIM rank SSIM rank FPS rank
(higher SSIM is better) (higher SSIM is better) (higher SSIM is better) (higher SSIM is better) (higher SSIM is better) (higher SSIM is better) (higher FPS is better)

SID [2]† 0.9689 6th of 10 0.9622 6th of 10 0.9522 4th of 10 0.9289 3rd of 10 0.8162 4th of 10 0.9257 3rd of 10 6.95 3rd of 10
NAFNet [3]† 0.9727 3rd of 10 0.9663 3rd of 10 0.9580 1st of 10 0.9345 2ndof 10 0.8531 2ndof 10 0.9369 2ndof 10 1.69 7th of 10
Real-ESRGAN [14] 0.8906 10th of 10 0.8612 10th of 10 0.8542 10th of 10 0.8541 9th of 10 0.8521 3rd of 10 0.8624 9th of 10 0.24 8th of 10
FastDVDNet [12]† 0.9712 5th of 10 0.9651 4th of 10 0.9510 5th of 10 0.9135 5th of 10 0.7685 7th of 10 0.9139 5th of 10 5.72 4th of 10
TOFlow [16]† 0.9636 8th of 10 0.9557 8th of 10 0.9408 7th of 10 0.9000 6th of 10 0.7573 8th of 10 0.9035 6th of 10 2.84 6th of 10
BasicVSR++ [1]† 0.9721 4th of 10 0.9664 2ndof 10 0.9425 6th of 10 0.8568 8th of 10 0.6285 9th of 10 0.8733 8th of 10 7.41 2ndof 10
VRT [6]† 0.9730 2ndof 10 0.9644 5th of 10 0.9287 8th of 10 0.8133 10th of 10 0.5601 10th of 10 0.8479 10th of 10 0.05 10th of 10
UDVD [10] 0.9461 9th of 10 0.9352 9th of 10 0.9147 9th of 10 0.8819 7th of 10 0.7831 6th of 10 0.8922 7th of 10 0.16 9th of 10
MF2F [4] 0.9657 7th of 10 0.9612 7th of 10 0.9537 3rd of 10 0.9271 4th of 10 0.7960 5th of 10 0.9207 4th of 10 4.62 5th of 10
Ours 0.9740 1st of 10 0.9665 1st of 10 0.9560 2ndof 10 0.9381 1st of 10 0.9013 1st of 10 0.9472 1st of 10 31.66 1st of 10

ISO 1600 ISO 3200 ISO 6400 ISO 12800 ISO 25600 Overall Speed

LPIPS rank LPIPS rank LPIPS rank LPIPS rank LPIPS rank LPIPS rank FPS rank
(lower LPIPS is better) (lower LPIPS is better) (lower LPIPS is better) (lower LPIPS is better) (lower LPIPS is better) (lower LPIPS is better) (lower FPS is better)

SID [2]† 0.0307 5th of 10 0.0358 7th of 10 0.0558 4th of 10 0.0901 3rd of 10 0.2767 4th of 10 0.0978 3rd of 10 6.95 3rd of 10
NAFNet [3]† 0.0240 3rd of 10 0.0353 6th of 10 0.0475 2ndof 10 0.0886 2ndof 10 0.2495 2ndof 10 0.0890 2ndof 10 1.69 7th of 10
Real-ESRGAN [14] 0.1466 10th of 10 0.1808 10th of 10 0.1964 10th of 10 0.2077 8th of 10 0.2622 3rd of 10 0.1987 10th of 10 0.24 8th of 10
FastDVDNet [12]† 0.0309 6th of 10 0.0349 5th of 10 0.0577 5th of 10 0.1315 5th of 10 0.3628 7th of 10 0.1236 5th of 10 5.72 4th of 10
TOFlow [16]† 0.0393 8th of 10 0.0489 8th of 10 0.0811 6th of 10 0.1604 6th of 10 0.4048 8th of 10 0.1469 6th of 10 2.84 6th of 10
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Table 3. Video denoising results on the CRVD (sRGB) benchmark. The resutls demonstrate that our approach not only achieves the best
overall performance but is also four times faster than the second-fastest method. For detailed PSNR metrics on the CRVD dataset, please
refer to Tab. 2 of the main paper.
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