
Diff-Palm: Realistic Palmprint Generation with Polynomial Creases
and Intra-Class Variation Controllable Diffusion Models

Supplementary Material

This supplementary materials provide the following con-
tents:
• an overview of datasets used: both public datasets and

anonymous datasets.
• evaluation metrics.
• additional experimental results.
• discussions on proposed sampling methods and validation

approaches.

1. Datasets

1.1. Public Datasets
We utilize seven publicly available palmprint datasets, in-
cluding, CASIA [S11], PolyU [S13], Tongji [S14], MPD
[S16], XJTU-UP [S10], IITD [S7], and NTU-CP-v1 [S9],
with detailed information provided in Tab.1 and example
images shown in Fig.1. Following the open-set protocol,
we divide the first five palmprint datasets into training and
testing sets in a 1:1 ratio based on the number of IDs, ensur-
ing no overlap between the IDs in the training and testing
sets. Due to the limited number of images in the other two
datasets, we used them exclusively for training.

1.2. Collected Anonymous Dataset
We employ keywords such as ”hand,” ”palm,” and ”palm
print” to search for images on the Internet using search en-
gines. After obtaining these images, we utilize Mediapipe
[S8] to detect the presence and completeness of palms in
the images. Following this filtering process, we apply the
detect-then-crop protocol in [S15] to extract the Region of
Interest (ROI) of the palmprints. We have acquired 48,000
complete palmprint ROI images, which are then used to
train our generative model. Example images are shown in
Fig.2. Due to relevant privacy protection regulations, we
will release the URLs to these images.

Datasets #ID #Images Devices

CASIA 620 5502 Digital camera
PolyU 388 7738 Scanner
Tongji 600 12,000 Digital camera
MPD 400 16,000 Mobile phone
XJTU-UP 200 7900 Mobile phone
IITD 460 2601 Digital camera
NTU-CP-v1 652 2390 Digital camera

Table 1. Details of the seven public palmprint datasets.

Figure 1. Example images of public palmprint datasets.

Figure 2. Example images of collected anonymous datasets.

2. Evaluation Metrics
2.1. Performance Metrics
we adopt the TAR(True accept ratio)@FAR(False accept ra-
tio) metric, which is a widely used metric in open-set recog-
nition tasks. It quantifies the system’s ability to correctly ac-



Figure 3. Histograms of the 15 polynomial coefficients and the
x-coordinates for 3 endpoints

cept genuine instances while controlling the rate of falsely
accepted impostors. To compute TAR@FAR, one first de-
termines the threshold t under the specific FAR, which rep-
resents the proportion of non-genuine instances incorrectly
accepted as genuine. At this threshold t, the TAR is cal-
culated as the proportion of genuine instances correctly ac-
cepted, as follows,

TAR(t) =
Number of True Acceptances

Total Number of Genuine Attempts
.

2.2. Datasets Evaluation Metrics
We utilize three metrics derived from[S6] to evaluate the
synthesized dataset. Specifically, we employ a recognition
model Feval, pre-trained on a real dataset to extract features
from each image in the dataset. For the image Xc

i , i-th sam-
ple within c-th label, we denote its feature as f c

i = Feval(Xc
i ).

We use cosine similarity to measure the distance between
two samples. Additionally, we denote the feature of the cen-
ter of each class as f̄ c for c ∈ {1, . . .C}, which is also the
spherical mean of the samples within the same label.

Class Uniqueness. We first define Uc as follows,

Uc = {f̄ c : d( ¯f cn , ¯f cm) > r,m < n, n,m ∈ {1, . . .C}},

where d(·, ·) is the cosine distance. The Uc is the set of
unique subjects determined by the threshold r. For this met-
ric, we define Uclass :=| Uc | /C, the ratio between the
number of unique subjects and the number of total labels.

Identity Consistency. To measure how consistent the
synthesized samples are in adhering to the label condition,
we define Cidentity as

Cidentity =
1

C

C∑
c=1

1

Nc

Nc∑
i=1

d(f c
i , f̄ c) < r,

which is the ratio of individual features f c
i being close to

the class center f c. For a given threshold r, higher values
of Cidentity mean the samples under the same label are more
likely to be the same subject.

Intra-class Diversity. We aim to measure how diverse
the generated samples are under the same label condition,
as well as the diversity is in the style of an image, not in
the subject’s identity. In the original paper [S6], the Incep-
tion Network pre-trained on ImageNet is utilized to extract
the style information of the images. However, since palm-
prints are significantly different from the images in Ima-
geNet, and are often simple and relatively uniform, we em-
ploy a pixel-based diversity measure. Specifically, we adopt
X̄c = 1

Nc

∑Nc
i=0 Xc

i denotes the mean image of c class, and
diversity is defined as:

Dintra =
1

C

C∑
c=1

1

Nc

Nc∑
i=1

∥Xc
i − X̄c∥1,

where ∥ · ∥1 denotes L1 norm. We take the Dintra value of
datasets generated by Diff-Palm with K = 0 as the baseline,
normalizing it to 1.0, and adjusting all other values accord-
ingly.

3. Additional Experimental Results
3.1. Histogram of Polynomial Coefficients
We use three polynomial curves to mark the three main lines
of the palmprint. Each polynomial curve contains five co-
efficients. Therefore, we plot the histograms for all 15 co-
efficients, as shown in Fig.3. Additionally, we conduct a
statistical analysis of the x-coordinates for the endpoints of
3 palm lines.

3.2. Performance on Individual Public Datasets
We conduct recognition experiments on individual public
datasets. The experimental results are presented in the first
section of Tab.2. The performance achieved on individual
public datasets is significantly lower compared to that on
mixed public datasets.

3.3. Further Fine-Tuning Experiments
We adopt Diff-Palm to generate datasets with a large num-
ber of IDs. These datasets are used to pre-train the recog-
nition model, which is subsequently fine-tuned using real
datasets. As shown in the second section of Tab.2, the per-
formance of our method consistently improves after fine-
tuning.



Methods Configs Performance (TAR@FAR=1e-6) ↑

#IDs #Images FT w/ Real CASIA PolyU TongJi MPD XJTU-UP Avg.

CASIA 310 2510 % 0.7243 0.7198 0.5952 0.0964 0.1963 0.4664
PolyU 194 3869 % 0.5235 0.7574 0.4322 0.0746 0.1402 0.3856
TongJi 300 6000 % 0.7344 0.7115 0.8032 0.1476 0.0977 0.4989
MPD 200 8000 % 0.8839 0.8254 0.8599 0.3745 0.2939 0.6455
XJTU-UP 100 3950 % 0.7741 0.7518 0.7183 0.1805 0.4549 0.5759
IITD 460 2601 % 0.3895 0.5205 0.1024 0.0397 0.0681 0.2240
NTU-CP-v1 652 2390 % 0.6652 0.8330 0.7970 0.1628 0.2588 0.5434

Diff-Palm 5k 100k ! 0.9783 0.9850 0.9848 0.6754 0.8966 0.9040
Diff-Palm 10k 200k ! 0.9857 0.9910 0.9905 0.7400 0.9442 0.9303
Diff-Palm 20k 400k ! 0.9832 0.9943 0.9920 0.7922 0.9484 0.9420
Diff-Palm 30k 600k ! 0.9870 0.9945 0.9941 0.8044 0.9570 0.9474
Diff-Palm 40k 800k ! 0.9827 0.9949 0.9936 0.8179 0.9593 0.9497
Diff-Palm 50k 1M ! 0.9843 0.9965 0.9933 0.8498 0.9700 0.9588

Diff-Palm(10k) 2k 40k % 0.8598 0.9472 0.9113 0.4124 0.6133 0.7488
Diff-Palm(48k) 2k 40k % 0.8782 0.9601 0.9460 0.4643 0.6161 0.7729

Real data(R50) 2.2k 29.3k % 0.9429 0.8927 0.9449 0.3974 0.6111 0.7577
IDiff-Face(R50) [S1] 2k 40k % 0.7944 0.7404 0.6208 0.1793 0.2734 0.5217
PCE-Palm(R50) [S5] 2k 40k % 0.5749 0.7188 0.5835 0.2738 0.4347 0.5171
Diff-Palm(R50) 2k 40k % 0.8708 0.9558 0.9577 0.4472 0.6266 0.7716

Real data(MBF) 2.2k 29.3k % 0.9323 0.9071 0.9247 0.3616 0.6067 0.7466
IDiff-Face(MBF) [S1] 2k 40k % 0.7732 0.7445 0.6507 0.1667 0.2259 0.5120
PCE-Palm(MBF) [S5] 2k 40k % 0.6112 0.7379 0.5266 0.2695 0.4013 0.5093
Diff-Palm(MBF) 2k 40k % 0.8546 0.9489 0.9409 0.4297 0.6177 0.7584

Real data(ViT) 2.2k 29.3k % 0.8279 0.6909 0.7390 0.2132 0.2826 0.5505
IDiff-Face(ViT) [S1] 2k 40k % 0.6676 0.5968 0.5304 0.1234 0.1783 0.4193
Vec2Face(ViT) [S12] 2k 40k % 0.6967 0.5075 0.4406 0.0962 0.1108 0.3704
PCE-Palm(ViT) [S5] 2k 40k % 0.6012 0.4918 0.4604 0.1303 0.1515 0.3670
Diff-Palm(ViT) 0.6814 0.7920 0.7792 0.2798 0.3754 0.5816

Table 2. Comparsion performance of recognition models trained on various datasets. Results are reported in TAR@FAR=1e − 6. ‘R50’,
‘MBF’ and ‘ViT’ represent ResNet-50[S3], MobileFaceNet[S2] and ViT-t [S4], respectively

3.4. Polynomial Creases Similarity Control
We generate a polynomial creases dataset and control the
overall similarity using different γ. As illustrated in Fig.4,
we can observe that when γ is less than 1.0, the similarity
of the generated polynomial creases increases. Conversely,
when γ is greater than 1.0, the overall similarity decreases,
and the generated creases become more random.

3.5. Additional Ablation Experiments
Smaller Anonymous Datasets We have collected an
anonymous dataset containing 48,000 images, which we
used to train the generative model. We also experiment with
training Diff-Palm using a smaller dataset of 10,000 images.
The experimental results are presented in the third section
of Tab.2. We observe that the performance of Diff-Palm

trained with 10,000 images is inferior to that trained with
48,000 images. However, it still achieves results compara-
ble to those obtained with real datasets.

Different Recognition Backbone We conduct compar-
ative experiments using different recognition backbones
(modified Resnet-50 [S3], MobileFaceNet [S2] and ViT-t
[S4] ). The experimental results are shown in the last three
sections of Tab.2. We arrive at the same conclusions as
those in the main paper.

4. More Discussion

4.1. K-Step Noise-Sharing Sampling
To verify that K-step noise-sharing sampling can be ap-
plied to other diffusion-based methods, we use the offi-



Figure 4. Synthesized polynomial crease images with varying γ.
From top to bottom, the γ is set to 0.25, 0.5, 1.0, 2.0, and 4.0,
respectively

Figure 5. Synthesized face images by IDiff-Face[S1], (a) with
noise-sharing in first 500 sampling steps, (b) with noise-sharing
in last 500 sampling steps, (c) without noise-sharing, as well as
cosine similarity calculated between adjacent face images

cially released pre-trained IDiff-Face model [S1] and ap-
ply our K-step noise-sharing sampling to obtain facial im-
ages, as shown in Fig.5. We set K = 500 with a total step
of T = 1000. Each row of images is generated from the
same ID condition. Moreover, we employ a pre-trained fa-

cial recognition model to extract features from each image
and calculate the cosine similarity between adjacent face
images. It is evident that applying K-step noise-sharing
sampling significantly enhances the identity consistency of
the generated results. Additionally, applying noise-sharing
in the last K steps further improves the identity consistency
of the generated outcomes.

4.2. Validation Set

In PCE-Palm, they first split several public datasets into
training and testing sets in a 1:1 ratio and then mixed all
the testing sets from the public datasets for evaluation with
the trained recognition model. However, due to different
collection devices, environments, etc., the various public
datasets have significant style differences. When the recog-
nition model is tested on the mixed testing set, it is easy to
distinguish an identity from one dataset from identities in
other datasets. In contrast, we adopt a more general valida-
tion approach. After splitting the public data into training
and testing sets in a 1:1 ratio, we validate each dataset sepa-
rately. Subsequently, we average the validation results from
each dataset.
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