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Supplementary Material

1. Implementation Details
1.1. Training Details
We train a set of model parameters for each anomaly type.
The model requires 5,000 epochs for training, which takes
approximately 4.5 hours on an NVIDIA V100 32GB GPU.
With BCM, the training step requires only 2,000 epochs.
The batch size is set to 4, the learning rate is 0.000005, and
the rank of LoRA is 32.

During training, we utilize random flipping for data
augmentation. For the “Background Compensation Mod-
ule”, we have applied it to all categories that involve back-
grounds. Among them, categories bottle, pill and tooth-
brush have witnessed a highly significant improvement.
The improvement in the other several categories is rather
limited since they can already be generated with a high level
of quality.

1.2. Inference Details
During inference without BCM, we only need to input a set
of prompts: “a vfx with sks” and “sks”. This process gener-
ates a set of anomaly images along with the corresponding
anomaly part images. We generate 1000 image pairs with
a resolution of 512×512 for each anomaly. Specifically, the
num inference steps is set to 50, and the guidance scale is
set to 2.5. Notably, it takes 15 seconds to generate each pair
of images.

1.3. Mask Generation
We employ U2-Net [7] to segment the anomaly part image
and obtain the corresponding mask. Based on our observa-
tions, this mask is entirely accurate.

2. More Ablation Studies
We present comprehensive pixel-level and image-level re-
sults for downstream anomaly detection in Tables 1 and 2.
The term “dual-interrelated diffusion” refers to the utiliza-
tion of the dual-interrelated model framework, where the
type name such as “cable” is employed as a prompt. The
notation “+ prompt” indicates the replacement of the type
name with “vfx” and “sks”. Additionally, “+BCM” sig-
nifies the incorporation of the Background Compensation
Module, which is specifically applied to the categories of
bottle, grid, hazelnut, pill, and screw. It can be observed
that the prompt we designed outperforms the use of cate-
gory names, with the exception of the toothbrush category.
However, the gap between the toothbrush category and the
prompt can be effectively bridged by the BCM module.

3. More Qualitative Experiments

We conducted a comprehensive comparison between our
generated results and those of existing anomaly image gen-
eration methods, with the results presented in Fig. 1.
It is evident that the diversity of anomalies generated by
Crop&Paste [4] is limited. The results from DiffAug [11]
exhibit overfitting. The generated outcomes from CDC
[6] lack realism, often resulting in distortion, deforma-
tion, and other artifacts. SDGAN [5] and Defect-GAN
[10] fail to generate masks corresponding to the anoma-
lies, and the authenticity of the generated images is also
limited. The masks produced by DFMGAN [1] are not suf-
ficiently aligned, often resulting in the generation of spots
or noise. The currently best-performing method, Anomaly-
Diffusion [3], solely focuses on learning the anomaly part.
Consequently, the generated anomaly data fails to integrate
smoothly with the original image. And, this sometimes
leads to the situation where anomalies manifest against the
backdrop of the image. In contrast, our method not only
generates highly realistic and diverse anomaly data but also
produces highly aligned corresponding masks.

Among all these methods, DFMGAN and AnomalyD-
iffusion are currently the two best performers, so we con-
ducted a more detailed visualization comparison of our re-
sults with these two methods. Additional visualizations are
presented in Fig. 2-8. The left side shows two examples
from the training data, while the right side displays the gen-
erated image pairs.

4. Quantitative Experiments Setting

4.1. Generated Data
In all comparison methods, 1000 sets of data are generated
for each subclass for downstream detection tasks.

4.2. Metrics
This section provides supplementary information on the ra-
tionale for using these indicators and their definitions.
For Generation. General image generation tasks typically
use Fréchet Inception Distance (FID) [2] to evaluate the
difference between the generated data and the real data dis-
tribution. However, FID is not reliable in cases of lim-
ited anomalous data, as it tends to produce higher scores
for overfitted models. Therefore, we utilize the Inception
Score (IS) [9] as our evaluation metric. The IS does not
require training data and quantifies the quality and diversity
of the generated images by calculating the negative expo-
nent of the Kullback-Leibler (KL) divergence between the



Category
dual-interrelated diffusion +prompt +prompt +BCM
AUC-P AP-P F1-P AUC-P AP-P F1-P AUC-P AP-P F1-P

bottle 96.4 74.2 69.7 98.4 88.8 77.1 99.5 93.4 85.7
cable 95.7 74.1 68.8 97.5 82.6 76.9 97.5 82.6 76.9

capsule 97.8 54.8 54.3 99.5 73.2 67.0 99.5 73.2 67.0
carpet 99.4 86.7 77.9 99.4 89.1 80.2 99.4 89.1 80.2
grid 95.8 36.2 39.8 98.5 57.2 54.9 98.5 57.2 54.9

hazelnut 99.5 94.8 89.9 99.8 96.5 91.5 99.8 97.7 92.8
leather 98.4 79.1 70.1 99.9 88.8 78.8 99.9 88.8 78.8

metal nut 98.8 94.4 89.1 99.6 98.0 93.0 99.6 98.0 93.0
pill 89.6 38.1 31.2 98.4 86.9 78.2 99.6 95.8 89.2

screw 97.7 48.9 47.9 97.7 55.15 72.8 98.1 57.1 56.1
tile 99.1 91.0 80.8 99.7 97.1 91.0 99.7 97.1 91.0

toothbrush 98.2 65.2 67.1 97.2 62.7 64.0 98.2 68.3 68.6
transistor 94.9 78.2 73.1 98.0 86.7 79.6 98.0 86.7 79.6

wood 98.6 87.3 75.9 99.4 91.6 83.8 99.4 91.6 83.8
zipper 98.4 82.2 72.5 99.6 90.7 82.7 99.6 90.7 82.7

Average 97.22 72.35 67.21 98.8 83.0 78.1 99.1 84.5 78.8

Table 1. Ablaiton Study: comparison on pixel-level anomaly localization on the MVTec dataset by training a U-Net on our model’s
generated data using different settings.

Category
dual-interrelated diffusion +prompt +prompt +BCM
AUC-P AP-P F1-P AUC-I AP-I F1-I AUC-P AP-P F1-P

bottle 98.0 99.2 96.4 98.7 98.0 98.9 100 100 100
cable 92.3 94.5 85.1 97.7 98.3 94.2 97.7 98.3 94.2

capsule 81.9 93.5 88.9 97.6 99.2 95.8 97.6 99.2 95.8
carpet 96.7 98.8 95.7 99.8 99.9 99.1 99.8 99.9 99.1
grid 97.2 98.6 95.0 99.5 99.7 97.6 99.5 99.7 97.6

hazelnut 100 100 100 100 100 100 100 100 100
leather 100 100 100 100 100 100 100 100 100

metal nut 97.7 99.3 97.6 99.7 99.9 99.2 99.7 99.9 99.2
pill 87.1 96.3 91.2 92.0 97.8 93.6 95.8 99.0 95.8

screw 83.5 90.1 84.1 86.6 94.2 86.1 87.8 95.0 87.2
tile 100 100 100 100 100 100 100 100 100

toothbrush 97.9 98.8 94.7 97.6 98.5 93.9 99.5 99.7 97.5
transistor 92.8 92.3 89.4 95.1 93.7 90.1 95.1 93.7 90.1

wood 99.3 99.7 97.6 100 99.9 100 100 99.9 100
zipper 100 100 100 100 100 100 100 100 100

Average 94.9 97.4 94.38 97.6 98.6 96.5 99.8 98.9 99.8

Table 2. Ablaiton Study: comparison on image-level anomaly localization on the MVTec dataset by training a U-Net on our model’s
generated data using different settings.

edge distribution of the generated images and the condi-
tional distribution of the class labels predicted by the In-
ception model. A higher IS score indicates better quality
and diversity in the generated images.

In addition, we use Intra-cluster Pairwise LPIPS Dis-
tance (IC-LPIPS) [6] to measure the diversity of the gen-
erated data. This method clusters the images into k groups
based on the LPIPS distance to k target samples and then
computes the average mean LPIPS distances to the corre-
sponding target samples within each cluster. Higher IC-
LPIPS scores indicate better diversity.
For Anomaly Inspection. We use the Area Under the

Receiver Operating Characteristic (AUROC), Average
Precision (AP), and F1-max to measure the performance
of the inspection following the general anomaly inspection
task.

4.3. Anomaly Inspection Detail
In the downstream task of anomaly detection, we employ
a simple U-Net [8] architecture. To mitigate the effects of
randomness, we train the model three times and select the
best result as the final outcome.
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Figure 1. Comparison on the generation results on MVTec.
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Figure 2. Comparison on the type of hazelnut-print. DFMGAN and AnomalyDiffusion struggle to generate realistic anomalies, particularly
in the print class, where the anomalous regions consist of strings of letters. In contrast, our method successfully generates both the shape
of the letters and the corresponding mask that aligns with their contours.
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Figure 3. Comparison on the type of grid-broken. For this specific type of small, structure-related anomaly, the images generated by
DFMGAN are of poor quality, and AnomalyDiffusion fails to produce any anomalies. In contrast, our method generates highly realistic
and effective anomaly images.
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Figure 4. Comparison on the type of toothbrush-defective. The anomalies generated by DFMGAN lack realism, while those produced by
AnomalyDiffusion are detached from the main object, Additionally, the generated anomalies, such as holes and bristles of toothbrushes,
are mixed. In contrast, although there are some differences in background color, the generated anomalies by our model are fully consistent
with real-world scenarios. Furthermore, the background issues do not impact the effectiveness of anomaly detection in downstream tasks.
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Figure 5. Comparison on the type of leather-poke. The anomalies generated by AnomalyDiffusion are slightly better than those produced
by DFMGAN, however, there is a noticeable color difference in the leather. In contrast, our method achieves good results in both aspects.

DFMGAN

Anomaly
Diffusion

Ours
Mvtec

capsule-scratch

Figure 6. Comparison on the type of capsule-scratch. For scratches, a relatively minor type of anomaly, neither DFMGAN nor AnomalyD-
iffusion can generate effective results. In contrast, our method not only produces realistic anomalies but also demonstrates a good variety.
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Figure 7. Comparison on the type of bottle-broken small. This type of anomaly refers to a small blemish around the edge of a bottle, while
broken large indicates a larger blemish in the same area. The quality of the image generated by DFMGAN is limited, and the mask are not
properly aligned. while the abnormal position generated by AnomalyDiffusion sometimes is not correct, and the shape does not belong to
the type of broken small, but more like broken large. Our method, however, achieves good results in both position and shape.
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Figure 8. Comparison on the type of cable-cut inner insulation. It is evident that neither DFMGAN nor AnomalyDiffusion can generate
realistic anomalies, and the overall quality of the images produced by DFMGAN is subpar. In contrast, our method successfully generates
realistic and diverse abnormal data.


