
FloVD: Optical Flow Meets Video Diffusion Model for Enhanced
Camera-Controlled Video Synthesis

Supplementary Material

In this supplemental document, we provide:
• Additional implementation details of FloVD,
• Experimental details of baseline methods,
• Additional evaluation details,
• Additional analysis,
• Additional comparison, and
• Additional visual results.

1. Additional Implementation Details of FloVD

1.1. Network Architecture

The VAE encoders and decoders, and denoising U-Nets of
the object motion synthesis model (OMSM) and of the flow-
conditioned video synthesis model (FVSM) adopt the net-
work architectures of Stable Video Diffusion [2]. For the
flow encoder of FVSM, we adopt the CNN encoder from
CameraCtrl [4], modifying it to process two-channel opti-
cal flow maps instead of six-channel Plücker embeddings.
The flow encoder produces multi-level flow embeddings
{ζ(t,l)}T,L

t=1,l=1 for the t-th frame at level l, where T = 14
and L = 4. To incorporate the optical flow condition into
the denoising U-Net, the multi-level flow embeddings are
added to the intermediate feature maps within the U-Net’s
encoder. Each intermediate feature map matches the resolu-
tion and channel size of the corresponding flow embedding
at the encoder’s depth level l.

1.2. Experimental Details

For training OMSM and FVSM, we use a learning rate of
0.00003 with the AdamW optimizer [8]. FVSM is trained
over approximately two days using 16 A100 GPUs. OMSM
is trained on the entire dataset for about three days using 8
A100 GPUs, followed by fine-tuning on the curated dataset
for an additional 1.5 days. As explained in the main pa-
per, we apply adaptive normalization for optical flow maps,
following Li et al. [6]. Specifically, we use different scale
factors for the normalization of x- and y-directional optical
flow vectors. The scale factors of (18, 12) and (45, 24) are
used to normalize flow-map data for OMSM and FVSM,
respectively.

Following Stable Video Diffusion [2], we adopt the
EDM framework [5] for both training and inference, and
apply linearly increasing classifier-free guidance during in-
ference. For training FVSM, we only modified the timestep
sampling strategy of the EDM framework. Inspired by T2I-
Adapter [10], we introduce a quadratic timestep sampling
strategy to enable FVSM to more effectively leverage the in-

put flow condition for structural content generation. Specifi-
cally, FVSM is trained primarily on highly noised data with
large timesteps.

To achieve this, timesteps are uniformly sampled within
the range [0, 1], squared, and subtracted from 1. The re-
sulting values are then scaled to match the range of (-3.66,
3.66), which roughly aligns with the timestep range used in
the EDM framework. This approach enables the denoising
U-Net in FVSM to better learn structural content generation
by leveraging the flow map condition, thereby enhancing its
capability for effective camera control.

1.3. Off-the-shelf Models Used in FloVD

We employ several off-the-shelf models in our framework:
a single-image 3D estimation network [16], an optical flow
estimation network [13], and a segmentation network [12]
for moving object detection.

Single-image 3D estimation network. We use Depth
Anything V2 [16] for the single-image 3D estimation net-
work. Specifically, we use its fine-tuned version for met-
ric depth estimation, which has a ViT-base encoder and is
trained using the Hypersim dataset.

Optical flow estimation network. We use RAFT [13] for
the optical flow estimation network. Network outputs are
iteratively updated 20 times to obtain the final optical flow
map.

Moving object segmentation network. In the flow in-
tegration stage, we use a binary mask for moving ob-
jects. To obtain the mask, we use an open-set segmentation
method, Grounded-SAM 2, which integrates an open-set
object detection model [7] and a foundation segmentation
model [12]. This method takes a text prompt and predicts
masks indicating subjects related to the input text prompt.
To obtain masks for moving objects, we use ”moving ob-
ject.” as the input text prompt. We do not use the obtained
mask if the number of pixels in the mask is more than 50%
of the total image pixels.

Temporally-consistent video editing. For temporally-
consistent video editing using FloVD, we employ an off-
the-shelf optical flow estimator and image editing tool. We
use RAFT [13] and InfEdit [15] for the optical flow estima-
tion and first frame editing, respectively.



Training Timestep Pexels-random Pexels-small (< 20) Pexels-med. (< 40) Pexels-large (≥ 40)
Data Strategy FVD (↓) FID (↓) IS (↑) FVD (↓) FID (↓) IS (↑) FVD (↓) FID (↓) IS (↑) FVD (↓) FID (↓) IS (↑)

Baseline RE10K QTS 157.99 39.61 11.19 241.61 22.01 11.09 334.06 22.30 11.17 363.04 23.17 12.05
+ OMSM RE10K QTS 104.92 36.33 11.51 231.35 22.43 11.44 206.38 20.53 11.62 229.05 20.95 12.65
+ large-scale data Internal QTS 91.55 35.66 11.63 220.65 22.49 11.58 183.14 20.71 11.68 207.39 21.12 12.95

Baseline RE10K EDM 148.42 39.92 11.23 238.85 22.16 11.07 309.28 22.05 11.28 335.02 22.91 12.15
+ OMSM RE10K EDM 95.31 36.90 11.43 217.24 22.13 11.44 186.21 20.12 11.81 201.27 20.45 12.71
+ large-scale data Internal EDM 80.74 35.65 11.73 212.03 21.79 11.62 165.78 19.73 11.684 177.45 20.02 12.88

Table S1. Comprehensive quantitative ablation study of our main components.

Set 1 (0-20) Set 2 (20-40) Set 3 (40-inf)

Figure S1. Visual examples of each benchmark dataset, catego-
rized according to the degree of object motion.

2. Experimental Details of Baseline Methods
We compare our method against baseline methods for
camera-controllable video synthesis [3, 4, 14, 17]. Among
these, MotionCtrl [14] and CameraCtrl [4] support detailed
camera control by utilizing camera parameters as input,
whereas AnimateDiff [3] and Direct-a-Video [17] support
basic camera control operations, such as translation and
zoom. For all the baseline methods, we used the official
checkpoints and inference code provided in their respective
GitHub repositories.

MotionCtrl We use the official PyTorch implemen-
tation of MotionCtrl [14]. To ensure a fair com-
parison with our method, which is based on Sta-
ble Video Diffusion [2], we utilize the official vari-
ant of MotionCtrl that employs Stable Video Diffusion
(https://github.com/TencentARC/MotionCtrl).

CameraCtrl We use the official PyTorch implementation
of CameraCtrl [4]. To ensure a fair comparison with our
method, which is based on Stable Video Diffusion [2], we
utilize the official variant of CameraCtrl that employs Stable
Video Diffusion (https://github.com/hehao13/CameraCtrl).

AnimateDiff We use the official PyTorch implementa-
tion of AnimateDiff [3]. The official codes can be found in
(https://github.com/guoyww/AnimateDiff). To control pre-
defined camera trajectories, such as zoom and pan, Ani-
mateDiff provides fine-tuned models tailored for each cam-
era trajectory. Thus, we utilize these fine-tuned models for
camera control during video generation. Additionally, we

mRotErr (◦) mTransErr mCamMC
Ours w/ EDM 1.70 0.0983 0.1010
Ours w/ QTS 1.43 0.0869 0.0887

Table S2. Analysis of employing different timestep sampling
strategies for camera controllability.

use the model from Realistic Vision as a backbone for Ani-
mateDiff, as it is most closely aligned with generating nat-
ural images.

Direct-a-Video We use the official PyTorch implementa-
tion of Direct-a-Video [17]. The official codes can be found
in (https://github.com/ysy31415/direct a video). Direct-a-
Video controls basic camera motions using camera parame-
ters such as x-pan ratio, y-pan ratio, and zoom ratio. For our
experiments, we set the pan ratio to 0.3 and used scales of
0.8 and 1.2 for zoom-in and zoom-out ratios, respectively.

3. Additional Details for Evaluation Protocol
3.1. Camera Controllability

To obtain each video clip in the evaluation dataset, we first
select a middle frame within the whole video frames as the
first frame, and then choose 13 additional frames at intervals
of four frames starting from the first frame, resulting in a
total of 14 frames. Then, we obtain camera parameters cor-
responding to these selected frames to serve as the ground-
truth camera parameters for the evaluation set. For the cam-
era parameters estimated from synthesized videos, we nor-
malize the translation vectors using a scale factor to account
for scene-specific scale variations, following CamI2V [18].
Specifically, the translation vectors are divided by a scene-
specific scale factor. This scale factor is determined based
on the L2 distance between the locations of the first camera
and the farthest camera in the scene.

3.2. Video Synthesis Quality

As explained in the main paper, we provide three bench-
mark datasets of real-world videos categorized by small,
medium, and large object motions to evaluate the object
motion synthesis quality. To obtain videos with minimal
camera motions, we first obtain optical flow maps from the
Pexels dataset [1], and then filter out videos whose average

https://github.com/TencentARC/MotionCtrl
https://github.com/hehao13/CameraCtrl
https://github.com/guoyww/AnimateDiff
https://github.com/ysy31415/direct_a_video


Input image Object flow map Synthesized video framesSegmentation map

Figure S2. A visual example of the limitation of FloVD.

# of Data 70K 300K 500K (Original)
FVD (↓) 191.73 188.22 177.45

Table S3. Analysis of the scaling effect using the Pexels-large
benchmark dataset and the FVD scores.

magnitude of the optical flow vectors of the background
is larger than 1.0. Fig. S1 shows several visual examples
from each benchmark dataset. The first set primarily fea-
tures landscapes or objects with minimal motions, while the
third set typically consists of objects with notable motions.

4. Additional Analysis
In the following, we provide additional analysis of our
method in terms of comprehensive ablation study, timestep
sampling strategy, scaling effect, and training FVSM using
camera parameters.

4.1. Additional Quantitative Ablation Study

Tab. S1 reports the comprehensive evaluation of our main
components using the whole benchmark datasets for video
synthesis quality. Introducing each component mostly en-
hances evaluation metrics, in both cases using the quadratic
timestep sampling strategy (QTS) or EDM framework [5].

4.2. Timestep Sampling Strategy

As stated in Sec. 5.1 of the main paper, we adopt the
quadratic timestep sampling strategy (QTS) for better cam-
era controllability, instead of the timestep sampling strat-
egy of the EDM framework [5] used in Stable Video Dif-
fusion [2]. Our model using QTS shows slightly compro-
mised video synthesis quality compared to our model us-
ing EDM (Tab. S1). Nevertheless, our model with QTS still
demonstrates better performance than the previous meth-
ods (Tab. 2 in the main paper). Moreover, QTS enhances the
camera controllability of FVSM (Tab. S2). This improved
camera controllability results from increased chances of
training with highly noised data, allowing our model to
effectively leverage flow conditions for structural content
generation.

4.3. Scaling effect

By utilizing optical flow during training instead of cam-
era parameters, our method can leverage arbitrary training
datasets, allowing for the use of an arbitrary number of

mRotErr (◦) mTransErr mCamMC
Ours w/ CamParams 1.76 0.1016 0.1039
Ours w/ Flow (final) 1.43 0.0869 0.0887

Table S4. Analysis of training FVSM using camera parameters.

training datasets. Thus, we investigate whether increasing
the size of the training dataset could enhance the perfor-
mance of our approach.

To assess this, we constructed two subsets randomly
sampled from our full internal dataset, containing 70K and
300K pairs of video frames with corresponding optical flow
maps, respectively. Notably, the RealEstate10K dataset [19]
includes around 70K videos, fewer compared to the 500K
pairs available in our full internal dataset. We trained two
variant models of FVSM using these subsets. As illustrated
in Tab. S3, the performance of our method on the Pexels-
large benchmark dataset consistently improves as the train-
ing dataset size increases, indicating the potential for further
performance gains with even larger datasets. Additionally,
we anticipate that adopting transformer-based architectures
could further enhance performance with larger datasets.

4.4. Training FVSM using Camera Parameters

Our proposed training strategy employs optical flow maps
rather than camera parameters to eliminate the dataset re-
striction. Although we may use camera parameters for train-
ing when available in the dataset, we found that this does
not improve the performance. To show this, we train FVSM
using camera flow maps derived from estimated depth and
camera parameters, rather than optical flow estimated from
the video dataset. As shown in Tab. S4, the results show de-
graded performance compared to the original one. This per-
formance degradation came from depth estimation errors,
as we utilize the off-the-shelf single-image 3D estimation
network [16].

4.5. Visual Example on Limitation

Despite using FVSM trained on the large-scale dataset, er-
rors derived from both the object motion synthesis model
and the moving object segmentation model can produce un-
natural object motions. Fig. S2 shows a visual example on
the limitation, particularly in the ring pull of the can (red
arrow).
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Figure S3. Limited scope of circular camera trajectory.

Pexels-small Pexels-med. Pexels-large
MotionCtrl 0.884 0.881 0.875
CameraCtrl 0.913 0.913 0.910
Ours 0.917 0.916 0.911

Table S5. Quantitative comparison on visual consistency using
CLIP-Similarity.

5. Additional Comparison
In the following, we provide additional comparison against
previous methods [4, 14] in terms of visual consistency, 3D
scene consistency, and challenging camera motion.

5.1. Visual Consistency

To evaluate image-to-video fidelity, we measure CLIP-
Similarity [11] between synthesized videos and an input
image. Tab. S5 shows quantitative comparison results. Mo-
tionCtrl [14] less effectively preserves visual consistency
with input image due to visual artifacts, achieving the low-
est scores, while ours achieves slightly higher scores than
CameraCtrl [4].

5.2. 3D Scene Consistency

Thanks to our 3D-based approach for camera-controllable
video generation, FloVD can also provide 3D consis-
tent video synthesis results. To validate this, we evalu-
ate 3D scene consistency by employing a NeRF-based ap-
proach [9]. Specifically, we first generate video frames with
a forward-facing, circular camera trajectory. We then split
these synthesized frames into training and test sets, and re-
construct NeRF using the training set. Lastly, we compute
PSNR by comparing the test-set frames against the corre-
sponding images rendered from NeRF.

Fig. S4 shows rendered frames at test-set viewpoints
from the reconstructed NeRF. FloVD shows high-quality
rendered images compared to those of the previous meth-
ods [4, 14], demonstrating more 3D-consistent video syn-
thesis results of our method. Tab. S6 shows quantita-
tive comparison on 3D scene consistency using the PSNR
scores. These results also demonstrate that our method
achieves comparable or superior 3D scene consistency com-
pared to others.

5.3. Challenging Camera Motion

We provide a qualitative comparison of video synthesis
capability for extreme camera motions. Extreme camera
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Figure S4. Qualitative comparison on 3D scene consistency using
NeRF [9] reconstruction.

Horns Fern Trex
MotionCtrl 15.56 17.87 18.12
CameraCtrl 19.84 21.42 20.71
Ours 21.55 20.93 20.02

Table S6. Quantitative comparison on 3D scene consistency using
the PSNR scores.

poses (e.g., circular camera rotations) are still challenging in
camera-controlled video synthesis, and all existing methods
struggle with this issue. Nonetheless, our approach demon-
strates higher robustness to extreme camera poses than oth-
ers, due to our 3D-structure-based camera flow map. Fig. S3
shows that MotionCtrl [14] completely fails to follow the
input camera parameters. In contrast, both CameraCtrl [4]
and our method generate results that reflect input camera pa-
rameters up to 72◦. While both methods generate distorted
images at 72◦, our results exhibit fewer distortions.

6. Additional Visual Results

In this section, we provide additional visual results. First,
we qualitatively compare our method with AnimateDiff [3]
and Direct-a-Video [17] using basic camera trajectories
such as zoom and translation, as these methods are limited
to those basic camera movements. Next, we qualitatively
compare our method with MotionCtrl [14] and CameraC-
trl [4], which support more detailed camera control during
video generation. Lastly, we provide additional visual ex-
amples of the applications regarding temporally-consistent
video editing and cinematic camera control.
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Figure S5. Additional visual example of the dolly-zoom effect.
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Figure S6. Additional visual example of the temporally-consistent
video editing.

6.1. Using Basic Camera Trajectory

Fig. S8 presents a visual comparison using basic camera
trajectories such as zoom-in and translation to left and
right. Unlike our method, which uses a single image as in-
put, Direct-a-Video [17] and AnimateDiff [3] require text
prompts as input. Thus, we use text prompts of videos from
the Pexels dataset [1] as input for these methods, while the
first frame of the same video serves as input for our method.
As shown in Fig. S8, our method synthesizes high-quality
video frames with accurate camera control, while previous
methods produce video frames with quality degradation.

6.2. Using Detailed Camera Trajectory

Fig. S7 and Fig. S9 provide a visual comparison of syn-
thesized video frames with detailed camera trajectory. Mo-
tionCtrl [14] often fails to accurately follow the input cam-
era trajectory, whereas both CameraCtrl [4] and our method
demonstrate accurate camera control performance.

Fig. S10 provides additional visual comparison across
all the methods. Our method generates realistic object mo-
tion in the synthesized video frames, while previous meth-
ods often produce unnatural videos with artifacts. In partic-
ular, CameraCtrl [4] often synthesizes video frames without
object motion, and MotionCtrl [14] often produces incon-
sistent foreground and background, as shown in Fig. S10.
Additional visual examples can be found in Fig. S11.

6.3. Application

In Sec. 5.5 of the main paper, we provide two applications
using our framework: temporally-consistent video editing
and cinematic camera control. We provide additional vi-

sual examples of these applications. Fig. S5 and Fig. S5
show additional examples of the dolly-zoom effect and
temporally-consistent video editing result, respectively.
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The camera rotates to the right 
while moving along the curve.
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while rotating to the left.

Figure S7. Additional qualitative comparison of our method against MotionCtrl [14] and CameraCtrl [4] using detailed camera trajectories.
MotionCtrl often fails to follow the input camera parameters during video generation.
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Figure S8. Additional qualitative comparison of our method against Direct-a-video [17] and AnimateDiff [3] using basic camera trajecto-
ries.
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while moving forward.
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while slightly rotating to the right.

Figure S9. Additional qualitative comparison of our method against MotionCtrl [14] and CameraCtrl [4] using detailed camera trajectories.
MotionCtrl often fails to follow the input camera parameters during video generation.
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Figure S10. Additional qualitative comparison of our method against MotionCtrl [14] and CameraCtrl [4] using detailed camera trajectories.
Our method produces more natural object motion, while CameraCtrl produces a foreground object without motions, and MotionCtrl
produces artifacts.
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Figure S11. Additional qualitative comparison of our method against MotionCtrl [14] and CameraCtrl [4] using detailed camera trajectories.
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