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A. Zero-Shot 3D Semantic Perception

This section provides a comprehensive overview of the zero-
shot 3D semantic perception module. We will detail the
rendering, semantic label generation, and the 2D to 3D label
fusion used for 3D semantic calculations.

Multi-view Rendering. Our approach begins with render-
ing ten multi-view images for each object. The camera is
positioned on a sphere with a radius of 2.25m. Elevation
angles are set at {−20◦, 10◦, 40◦}, while azimuth angles are
uniformly sampled along circles parallel to the x-y plane for
each elevation angle. This setup ensures comprehensive cov-
erage of the object’s geometry from multiple perspectives.

Semantic Label Generation. GLIP requires both images
and their corresponding semantic labels as inputs. Manu-
ally annotating semantic labels for each category is labor-
intensive and time-consuming. To address this, we leverage
Large Language Models (LLMs) like ChatGPT, which can
generate semantic labels for any category in a zero-shot man-
ner. Specifically, we prompt ChatGPT to identify a set of
semantic region names useful for determining object orienta-
tion and to generate semantic labels for arbitrary categories.

2D to 3D label fusion. In the 2D to 3D processes, we
aim to project detections onto 3D vertices efficiently. There-
fore, constraints are incorporated into the formula to ensure
that the 2D bounding box of a part’s semantic instance lies
within the object’s overall 2D bounding box. With the parts
detection results in muti-view images generated by GLIP,
we calculate the proportion of each vertex belonging to a
specific semantic. For each vertex xl on face f , we compute
the proportion P s

l of vertex xl belonging to semantic s as
follows:

P s
l =

∑
k[VISk(f(xl))][INMk(f(xl))][INBk]∑

k[VISk(f(xl))]
, (1)

where VISk(f(xl)) denotes whether the face f(xl) is visible
in view k, [·] indicates the Iverson bracket, INMk(f(xl)) is
whether the pixel p corresponding to f in view k is inside
the semantic mask Ms

k . INBk denotes whether the bounding
box of the mask Ms

k is entirely enclosed within the shape in
view k.

B. Support-Plane-based Object Initialization
To obtain the right semantic perception by accommodating
the influence of the initial pose, we implement the Support-
plane-based Object Initialization to generate the initial poses.
For a test object in arbitrary pose, we first compute the 3D
convex hull and refine it to polygonal faces [5]. Then we
project the centroid of mesh, which is the weighted average
of object vertexes, onto each polygonal face. If the projected
point is within the polygon’s boundaries, the polygon is the
support polygon, and its plane is the support plane.

For each support plane, we can initialize the object by
aligning the plane parallel to the ground. The initial rotation
Ri for the i-th support plane is derived from the axis-angle
representation, defined by the rotation axis ui and angle θi.
Specifically, the normal vector of the supporting plane is
denoted as ni

s, and the ground’s normal vector is ni
g .

The axis of rotation ui is determined by the cross product
of the normal vectors ni

s and ni
g:

ui = ni
s × ni

g (2)

The angle θi between the two normal vectors ni
s and ni

g

is given by:

θi = arccos

(
ni
s · ni

g

∥ni
s∥∥ni

g∥

)
(3)

The rotation matrix Ri is then calculated using Rodrigues’
rotation formula:

Ri = I+ sin(θi)Ki + (1− cos(θi))K
2
i (4)

where Ki is the skew-symmetric matrix derived from the
axis of rotation ui = [ux, uy, uz]

T .

C. Canonicalization Hypothesis Generation
To mitigate the noise in 3D semantic perception, we repre-
sent the semantic points using a 3D Gaussian distribution.
For the prior semantic points (Xr,C

s
r), the semantic distri-

bution is represented as a normal distribution Gs
r :

Gs
r ∼ N (µs

r,Σ
s
r) (5)

where µs
r and Σs

r denote the mean and covariance of the
semantic distribution, respectively:

µs
r =

∑L
k=1 c

s,k
r xk

r∑L
k=1 c

s,k
r

(6)



Table 1. 3D object canonicalization on the ShapeNet dataset. Lower scores indicate better performance.

Car Table Chair Plane Couch Lamp Water.Method Prior num. IC GEC IC GEC IC GEC IC GEC IC GEC IC GEC IC GEC
CaCa [7] 2442 0.059 0.102 0.659 1.334 0.120 0.300 0.115 0.230 1.030 1.662 0.089 1.979 0.083 0.156

ConDor [6] 2442 0.260 0.313 0.495 0.891 0.386 0.668 0.228 0.290 0.387 0.598 0.964 3.085 0.268 0.395
Ours 1 0.077 0.087 0.702 0.783 0.558 0.656 0.224 0.238 0.479 0.544 2.651 2.874 0.141 0.157

Bench Speaker Cabinet Firearm Monitor Cell. Avg.Method Prior num. IC GEC IC GEC IC GEC IC GEC IC GEC IC GEC IC GEC
CaCa [7] 2442 0.496 0.776 1.844 2.044 1.544 1.699 0.051 0.187 0.500 0.625 0.300 0.548 0.570 0.942

ConDor [6] 2442 0.646 1.004 1.312 2.061 0.726 1.199 1.216 1.467 0.632 0.886 0.487 0.782 0.591 1.028
Ours 1 0.355 0.411 1.945 2.134 0.987 1.160 0.261 0.275 0.324 0.364 0.430 0.504 0.703 0.784

Table 2. Comparison of Metrics for Evaluating 3D Object
Canonicalization.

Metric Aeroplane Car Bowl Bottle Camera Can Mug Avg.
IC 2.911 3.260 3.500 3.863 1.726 2.384 0.920 2.652
CC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GEC 2.891 3.473 3.902 3.743 1.777 2.598 0.897 2.754

Σs
r =

∑L
k=1 c

s,k
r (xk

r − µs
r)(x

k
r − µs

r)
T∑L

k=1 C
s,k
r

(7)

Similarly, for the initialized object (Xi,C
s
i ), the semantic

distribution is modeled as Gs
i :

Gs
i ∼ N (µs

i (ω
s
i ),Σ

s
i (ω

s
i )) (8)

where µs
i (ω

s
i ) and Σs

i (ω
s
i ) represent the mean and covari-

ance of the semantic distribution, respectively:

µs
i (ω

s
i ) =

∑I
k=1 c

s,k
i Exp(ωs

i )x
k
i∑I

k=1 c
s,k
i

(9)

Σs
i (ω

s
i ) =

∑I
k=1 c

s,k
i yky

⊤
k∑N

k=1 C
s,k
i

(10)

where yk = Exp(ωs
i )x

k
i − µs

i (ω
s
i ).

D. Additional Experimental Results
Evaluation Metric Choice. We observe that the Category-
Level Consistency (CC) metric tends to degrade when the
canonicalizing transformation is set to identity. As shown in
Table 2 , for objects in arbitrary poses, setting the canonical
pose to identity results in high IC and GEC metric values,
indicating poor consistency across different object poses.
In contrast, the CC metric misleadingly suggests that ob-
jects in arbitrary poses, without any canonicalization, are
well-aligned. Consequently, GEC proves to be more reli-
able in reflecting the consistency of different objects after
canonicalization. Based on this observation, we use the IC
and GEC metrics to evaluate the performance of 3D object
canonicalization, as they provide a more robust and accurate
assessment compared to the CC metric.

Figure 1. Zero-shot semantic segmentation examples.

Figure 2. Robustness of our alignment method under varying
segmentation results.

Characteristics of 3D Segmentation. The failure cases of
3D segmentation can be categorized into two main types:
1. Under Segmentation: As shown in figure 1, certain ob-

jects (e.g., the car in the figure) were not fully segmented.
2. Over-segmentation: Parts that do not belong to the target

label were incorrectly assigned the same label, such as the
Shepherd dog in figure 1. Additionally, for the “Speaker”
category, segmentation completely failed, with significant
over-segmentation observed.

This represents a limitation of our method, which we hypoth-
esize is due to the insufficient training data for the “Vibrating
Plate” label in the VLM model.
Characteristics of Alignment. To evaluate the robustness
of our alignment method under segmentation noise, we in-
troduced perturbations to manually segmented labels and
tested the performance under under-segmentation and over-



Figure 3. Statistics on handling shape diversity.

segmentation conditions. As shown in figure 2, our method
demonstrates strong robustness to noise.
Handling Shape Diversity. To demonstrate the ability of
our method to handle shape diversity, we used the Chamfer
Distance metric to measure shape variations. As shown in
figure 3, we visualized the 17 categories with the highest
standard deviation in the COD dataset. The results show
significant shape differences in our aligned data, further
validating the robustness and effectiveness of our method.
Additional Results. We provide additional comparative re-
sults against state-of-the-art methods [6, 7], evaluated under
the condition that the methods [6, 7] are trained on full train-
ing datasets.

As Table 1 shows, on the simulated dataset ShapeNet,
where extension training data is provided, the methods [6, 7]
achieve better performance using the full training set. In
stark contrast, our method relies on only a single prior model,
requiring less than 1

2000 of the training data used by the other
two methods, achieving comparable performance.

In Table 3 and Table 4, we provide results evaluated on
two real datasets [3, 8]. These two datasets just provide a
limited training set for each category. Moreover, the training
data provided in these two datasets is synthetic, while the
provided test data is real scanned. As shown, our method
achieves state-of-the-art, even existing domain gaps between
the simulated prior and the real data, which demonstrates the
robustness of our method.

Furthermore, more qualitative results are shown in Fig-
ure 4 5 6. More results can be found at Project homepage:
COD.com.

On Downstream Tasks. We tested our dataset’s effec-
tiveness via ablation studies on category-level rotation esti-
mation tasks. Results on the ShapeNet sub-test set (from [1])
(Table 5) show significant accuracy gains with our curated
dataset over raw data.

E. Limitations
Our approach uses zero-shot 3D semantic perception, ren-
dering 2D semantic detection accuracy crucial for reliable
canonicalization. We utilize a multi-hypothesis initialization
and selection strategy to better accommodate semantic er-
rors. However, enhancing zero-shot 3D semantic perception

Table 3. 3D object canonicalization on the DREDS dataset.

Method Prior num. Aeroplane Car Bowl Bottle
IC GEC IC GEC IC GEC IC GEC

CaCa [7] 135 0.421 0.548 0.901 0.756 1.543 1.738 0.029 0.222
ConDor [6] 135 0.235 0.381 0.045 0.068 0.266 0.306 0.078 0.083

Ours 1 0.051 0.058 0.103 0.118 0.011 0.012 0.031 0.034

Method Prior num. Camera Can Mug Avg.
IC GEC IC GEC IC GEC IC GEC

CaCa [7] 135 1.177 1.442 1.787 2.042 0.622 0.677 0.926 1.061
ConDor [6] 135 0.283 1.296 0.231 0.492 0.067 0.084 0.184 0.447

Ours 1 1.116 1.177 0.030 0.037 0.018 0.019 0.194 0.208

Table 4. 3D object canonicalization on the NOCS dataset.

Method Prior num. Laptop Mug Bowl Bot-
IC GEC IC GEC IC GEC IC

CaCa [7] 135 0.596 0.755 0.733 0.753 1.386 1.635 0.053
ConDor [6] 135 0.163 0.315 0.061 0.076 0.157 0.185 0.068

Ours 1 0.187 0.222 0.091 0.082 0.033 0.036 0.144

Method Prior num. -tle Camera Can Avg.
GEC IC GEC IC GEC IC GEC

CaCa [7] 135 0.157 1.291 1.502 1.522 1.796 0.930 1.100
ConDor [6] 135 0.079 0.454 1.046 0.239 0.472 0.193 0.359

Ours 1 0.149 0.874 1.067 0.099 0.099 0.145 0.129

Table 5. Downstream Task. Accuracy evaluated within 30 degrees.

Train data Car Chair Plane Couch Lamp Water.
Objaverse-lvis 16.7 26.3 15.8 31.6 5.3 10.5

Shapenet 16.7 31.6 26.3 31.6 5.3 21.1
COD 22.2 36.8 31.6 31.6 5.3 26.3

Train data Bench Speaker Cabinet Firearm Cell. Avg.
Objaverse-lvis 21.1 5.3 0.0 15.8 10.5 14.4

Shapenet 15.8 5.3 0.0 31.6 15.8 18.3
COD 21.1 10.5 5.3 31.6 15.8 21.6

precision remains a promising research direction.
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Figure 5. Visual results of 3D object canonicalization on real dataset [3, 8]
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Figure 6. Visual results of 3D object canonicalization in the wild. The top three rows are from OmniObject3D [9], while the bottom three
rows are from Objaverse-LVIS [4].


