SFDM: Robust Decomposition of Geometry and Reflectance for Realistic Face
Rendering from Sparse-view Images
— Supplementary Material —

1. Overview

This supplementary material provides additional results and
analysis that support the methodology of our main text. We
provide more details on the implementation of our method
in Sec. 2. To validate the effectiveness and robustness of
our proposed method, we give additional results for subjects
with divergent characteristics and experiments conducted
on H3DS [15] in Sec. 3. In addition, we analyze the experi-
mental results in detail in Sec. 4, including quantitative and
qualitative metrics comparisons with other work. In Sec. 5,
we discuss the relationship between our task and single-
view reconstructions, highlighting the advantages and lim-
itations of each. Sec. 6 contemplates the potential negative
impact of our work and our responsibility to human sub-
jects. Extensive visualization results can be found in Sec. 7.
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Figure 1. Overview of different frameworks. (a) Framework like
VoISDF [20] accomplishes 3D reconstruction from dense images
but does not decompose radiance-related factors. (b) Framework
like NerFactor [23] introduces physically based rendering (PBR)
to simulate real-world lighting. (c) We propose a novel geometry
and reflectance decomposition framework for 3D face reconstruc-
tion from sparse views.

2. Implementation details

Network Architecture. In Stage 1, we aim to learn a gen-
eral facial template with both geometry and reflectance at-
tributes. For the geometry template, we slightly modify the

identity mini-nets and template mini-nets of ImFace [24].
Specifically, we introduce two additional MLPs as feature
extraction branches for each part, together with the mini-
nets, forming our deformation net Fyg, and template net
Teeo, Tespectively. Regarding the reflectance template Tiq,
we utilize an 8-layer MLP with 256 dimensions in each
layer, and the BRDF offset module F,s employs the same
architecture. The PBR module uses an MLP consisting
of four layers, each with 128 dimensions, to compute the
BRDF look-up-textures By and B;. For the albedo gradi-
ent predictor G, we also employ a four-layer MLP with 128
dimensions.

Figure 2. The network architecture of subsurface scattering offset.

In Stage 2, we introduce two additional modules: the dis-
placement net Fy;s and the subsurface scattering offset net
F. The displacement net is composed of a 4-layer MLP,
with each layer having 256 dimensions. To capture high-
frequency geometric details, we incorporate a positional en-
coding of 8 frequencies. The architecture of the subsurface
scattering offset module is illustrated in Fig. 2. At first, we
use a 4-layer MLP (Param-net) to obtain the scattering pa-
rameters 3 and a vector £(x) indicating the light integra-
tion region. Subsequently, we utilize two branches to inte-
grate light and scattering reflectance. In the light integra-
tion branch, we initially compress the Spherical Harmonics
(SH) weights into an ambient light embedding zi, by using
a linear layer. Afterwards, we utilize a light integration net-
work L; to obtain the light intensity of a small region on the
surface as Lj(x, Zig, £(x)), where x € R? are the coordi-
nates. For scattering reflectance, the scattering reflectance
integration network Fsp integrates the scattering reflectance
based on the scattering parameters £ and coordinates X, re-



sulting in the output of integrated reflectance. Both L;i and
Fsp comprise a 4-layer MLP. We use sine activation to al-
low the model to more effectively handle Gaussian curves
in scattering profiles. Finally, the 3-dimensional integrated
light and scattering reflectance are multiplied to produce the
offset term for diffuse components.

Volume rendering. Following most previous work [10],
we calculate the color by integrating the radiance L, and
density o € R along the ray r as:

4
C(r) = / Lo(x(t), wo)o(t)T'(t) dt, (1
o
where x(t) represents the coordinates of a point in the ray,
with ¢’ and t” as the starting and ending points along the
ray, respectively. T'(t) = exp(— j;tﬂ/ o(t) dt), which can be
considered as the radiance attenuation rate caused by hitting
particles along the ray.

Data preprocessing. We mainly use the Facescape [19]
dataset, which contains 359 subjects in 20 different expres-
sions. For each subject, Facescape has over 50 multi-view
images, along with corresponding camera parameters and
scanned meshes. We select 3, 5, and 10 frontal views for
training, and around 10 views for testing. Before train-
ing the model, we first preprocess the images and camera
parameters. Adopting the preprocessing approach of Neu-
Face [25] and ImFace [24], we crop the facial region from
the Facescape head mesh and align the cropped mesh within
the [-1, 1] range. This cropped mesh is also used as ground
truth for evaluating geometry accuracy. For camera param-
eters, we adjust the original Facescape camera settings to
correspond with the mesh processing operations. Regard-
ing the images, using the updated camera parameters, we
can render the corresponding face masks, which then allows
us to extract the facial regions from the original images.
Training details. During training, we use 10 subjects, each
with 10 views images from Facescape to train the facial
template in Stage 1. We tested 3, 6, 10, and 15 subjects
for template training, finding that performance saturates be-
tween 6 and 10 subjects. We employ the pre-trained Im-
Face model to initialize the geometry template. To promote
stable template learning, we apply a weight of 0.02 to the
learning rate for template optimization, which effectively
avoids severe variation. The total loss function for Stage 1
is:
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where Ai,---, A7 are 1, le™ !, 5e73, 1.5e72, 1le™3, 500,
and 5e3, respectively.
In Stage 2, we select subjects that are not used during
Stage 1. We mainly select one frontal image and two pro-
file images in the 3-view setting, so as to capture the most

comprehensive facial information of an individual. To ad-
just the contribution of each BRDF parameter from the re-
flectance template, we employ a set of learnable parameters
W (x). Specifically, we initialize the weight of each albedo
channel in w, to 0.4, while setting others to 0.9 due to the
substantial variation in albedo. During the second training
stage, we apply a weight of 0.02 to the learning rate for tem-
plate optimization. This approach ensures that the majority
of template information is retained, while still allowing for
slight modifications to enhance the suitability of template
parameters in Stage 2. The loss function for Stage 2 is based
on Stage 1 with two additional items:

Lo = Ls + AsLais + Ao Lss, 3)

where \g = 1le™2 and \g = 2e~3. Since the albedo gradi-
ent predictor G is not trained during Stage 2, we set A7 to
0.

We conducted our training procedure on Tesla V100

GPUs. In Stage 1, we utilized 4 GPUs for approximately
20 hours, using a mini-batch size of 2048 rays. For Stage
2, we employed 2 GPUs with 3, 5, and 10 views, with each
training session lasting around 2, 2.5, and 5 hours respec-
tively. In the future, we plan to explore acceleration tech-
niques such as hash encoding [11] and Plenoctree [21] to
enhance the efficiency of the decomposition and reconstruc-
tion processes.
Testing details. During testing, we apply calibration on
all methods to mitigate the exposure differences as Neu-
Face [25]. This process helps eliminate the overall color
disparities between the rendered images and the ground
truth images caused by unknown illumination or exposure
conditions. For example, in Fig. 10, the diffuse prediction
of NeuFace appears yellowish, potentially due to a false as-
sumption about the light being yellow. To minimize the im-
pact of such erroneous assumptions, the calibration aligns
the ground truth image by employing a 3 x 3 matrix on the
radiance values.

In scenarios involving relighting, we convert the envi-
ronment maps to SH weights following [4]. For specular
editing, we adjust the specular intensity parameter in b to
control the shininess of faces.

In the reflectance decomposition analysis (Sec. 5.4 of the
main text), we utilize RefMM [6] to fit and generate pseudo-
reflectance ground truth for all test images of five subjects.
Subsequently, we calculate the SSIM values for the diffuse
and specular results of each subject under the 3, 5, and 10
view settings.

3. Generalization on out-of-domain data

Different expressions. During template training, we use
randomly selected subjects with the same “grin” expression
to ensure that the facial template consists of the majority of
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Figure 3. Results on different expressions.

facial features. As shown in Fig. 3, our method exhibits ro-
bustness in decomposing subjects with various expressions,
since the “grin” face contains major elements on human
faces (e.g. teeth and eyes).

Divergent characteristics. Fig. 4 shows the results of sub-
jects with different skin colors and ages, which have large
variations from our facial template. Thanks to our adaptable
facial template, enriched with comprehensive human facial
priors, SFDM adeptly navigates these challenging scenarios
to achieve realistic face reconstructions.
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Figure 4. Results of subjects with large variations of skin colors
and ages from the template.

Figure 5. Albedo gradient visualization. The albedo gradient
can partially outline the sketches of human faces and provide ad-
ditional guidance for albedo prediction.

H3DS. To further verify the generalization performance of

our method on out-of-domain data, we conduct additional
experiments on the H3DS dataset [15]. We directly use the
facial template trained on Facescape for Stage 1, which al-
lows us to better assess the performance of the facial tem-
plate on unseen data. Moreover, we carry out an ablation
study on the components of Stage 1 to further validate the
contribution of our template to the robustness of decomposi-
tion. As shown in Fig. 6, in the absence of the template and
albedo gradient predictor, the model exhibits various de-
grees of decomposition errors in sparse view scenarios, such
as mistakes in the nose area. In contrast, with a complete fa-
cial template, despite facing challenges—without training a
new template on new data, imprecise facial segmentation
in H3DS, and significant lighting differences across views
(some with flash)—our method is still able to decompose
the face. We also visualize the albedo gradient in Fig. 5,
which resembles a sketch of the human face. The albedo
gradient provides a more generalized representation than
the absolute values of albedo, enhancing the model’s ability
to generalize in albedo prediction. To further enhance the
robustness of decomposition results for subjects with signif-
icant domain gaps, a more effective approach may involve
training the facial template on a more extensive and diverse
set of subjects.
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Figure 6. Results on H3DS. T’ presents the facial template and G
is the albedo gradient predictor. For each method showcased, the
set of three images corresponds to rendering, diffuse, and specular,
respectively.

4. Performance analysis

Quantitative results. We present the quantitative compari-
son results of all methods across different views in Tab.1 of
the main text. Specifically, the evaluation of image synthe-
sis quality is conducted using PSNR, SSIM, and LPIPS [22]
metrics. PSNR and SSIM only consider pixel-wise color
differences between predictions and ground truth, which
may not adequately reflect the synthesis reality. To eval-



uate the reality of rendered images, LPIPS uses a neural
network to quantify perceptual similarity. In the 3-view set-
ting, our method has a lower PSNR than DeformHead [18].
However, it excels over DeformHead in terms of LPIPS as it
allows for the capture of more intricate appearance details,
such as facial highlights and spots. Although the success-
ful reconstruction of these details has little contribution to
overall pixel-wise error metrics such as PSNR, it can en-
hance the realism of the rendered images.

We use the Chamfer distance (CD) to evaluate the accu-
racy of geometry reconstruction. Compared to our method,
geometry-oriented methods are more sensitive to geome-
try deformations, allowing them to capture intricate de-
tails such as teeth. However, the high sensitivity leads to
false high-frequency geometry predictions, especially un-
der sparse views. In Fig.4 of the main text and the figures in
Sec. 7, the facial skin appears smooth, but there are notice-
able bumps in the predictions of VolSDF and DeformHead.
Hence, our method has better performance in the CD met-
ric under sparse view settings. In a low-view setting of 10
views, our method tackles a more complex decomposition
task but still exhibits a comparable performance (marginally
lower) to pure 3D reconstruction methods.

In Tab.3 of the main text, we present a quantitative com-
parison of decomposition quality between our method and
NeuFace. Leveraging a general reflectance facial template,
SFDM achieves robust decomposition of reflectance terms,
leading to significantly superior diffuse and specular re-
flectance results compared to NeuFace. Specifically, Ne-
uFace often contributes all reflectance to the diffuse term
since the optimization simply relies on fitting facial images
without reflectance supervision. Consequently, its specu-
lar decomposition performance deteriorates notably under
sparse-view settings.

NeuFace Faces
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Figure 7. Comparison with NeuFace [25] in terms of specular
reflectance decomposition.

Qualitative results. Our method outperforms other BRDF
decomposition methods in terms of all metrics, demon-

strating superior rendering and geometry reconstruction ef-
fects. Besides, as shown in Fig. 7 and Sec. 7, our method
can robustly decompose specular terms across various sub-
jects and settings, benefiting from the comprehensive prior
knowledge of the learned facial template. Considering that
there is no ground truth for specular reflectance, we intro-
duce a straightforward metric called specular failure rate,
representing the percentage of entirely empty specular out-
put. This metric facilitates a quantitative comparison be-
tween our method and NeuFace. According to the statistics,
our method achieves a specular failure rate of 0%, whereas
NeuFace’s specular failure rates are 30%, 25%, and 20%
under 3 views, 5 views, and 10 views, respectively.

Furthermore, we observe that the TensolIR [7] exhibits
noticeable lining effects, prompting us to investigate. We
find these effects are caused by sparse view conditions.
When we utilize all training views, these phenomena dis-
appear.

5. Discussion with single-view methods

Our method focuses on the reconstruction from sparse
views, and thus we do not discuss single-view methods in
detail in the main text. However, this section will discuss
our relationship with single-view approaches. Although
sparse views offer limited perspectives, they can still pro-
vide rich 3D information when combined with camera an-
gles. For instance, with at least two-view images, the 3D
coordinates of a point corresponding in real space across
both views can be calculated using its 2D coordinates and
camera parameters. Conversely, single-view images con-
tain only 2D information and lack 3D details, often rely-
ing on 3D estimation methods for reconstruction. Due to
the limited information in a single 2D image, single-view
approaches typically require extensive training data (1000+
images) across a wide variety of identities to obtain the abil-
ity to perform 3D estimation effectively. By contrast, multi-
view methods can extract vast quantities of 3D information
from images of a single identity, making them more effi-
cient for tasks where multiple views are available.

One type of single-view approach involves GAN-based
methods, such as EG3D [2] and StyleSDF [12], which trains
models to generate 3D meshes and novel view images with
extensive training data. However, this method faces chal-
lenges with data volume requirements and consistency is-
sues in generated images (e.g., eyes fixating on the camera
from all views as 8). Similarly, Relightify [13] employs
another generative method, the diffusion model, which also
requires a large number of training images.

Another approach is based on parametric face mod-
els, predicting facial parameters from a single-view im-
age to reconstruct faces. For example, AlbedoMM [16]
uses 3DMM [1], TRUST [5] is based on FLAME [9], and
RefMM [6] utilizes BFM09 [14]. However, due to the



Method | Geometry | Reflectance | # views | Fine Details | Requring Albedo GT
NeRF [10] N N 20+ Y N
VoISDF [20] Y N 20+ Y N
DeformHead [18] Y N 10 Y N
TensolR [7] Y Y 20+ Y N
NeuFace [25] Y Y 20+ Y N
AlbedoMM [16] Y Y 1 N Y
TRUST [5] Y Y 1 N Y
Relightify [3] Y Y 1 N Y
Fitme [8] Y Y 1 N Y
RefMM [6] Y Y 1 N N
Ours Y Y 3 Y N

Table 1. Qualitative comparison with other methods. We assess the capabilities of various methods in comparison to our own. Our
approach can achieve detailed decomposition and reconstruction from three-view images, without the need for intricate lighting and ground

truth albedo prerequisites.

Figure 8. Results of StyleSDF [12]. The kid looks at the camera,
regardless of the rendering view.

difficulty of face decomposition tasks, these methods of-
ten require higher quality training data, such as various
environmental lighting settings (3D-RFE dataset [17] in
AlbedoMM) and pseudo ground truth reflectance (utiliz-
ing texture maps in TRUST and diffuse maps in the 3D-
RFE dataset). Additionally, the use of 3D morphable face
models, while efficient in compressing facial expressions,
tends to lose many details in face reconstruction. As shown
in Fig. 9, our experiments with RefMM’s reconstruction
results, although capable of generating geometry and re-
flectance from a single view, significantly lack the facial
details and realism achieved by our SFDM.

6. Ethnic statement

Our method is primarily used for facial reconstruction, thus
necessitating a focus on protecting individuals’ privacy. We
utilized the Facescape dataset, of which only a subset of IDs
are publishable. Consequently, we applied mosaic process-
ing (approved by the publishers of Facescape) to all por-
traits not on the publishable list, similar to what is done in
Sec. 7, to safeguard personal privacy. We encourage future
SFDM users to conduct facial reconstruction and decom-
position using facial images for which they have obtained
authorization, thereby respecting people’s portrait rights.

Figure 9. Comparison with RefMM. The first column presents
the ground truth images, while the second column showcases our
reconstruction results. Regarding RefMM’s outcomes, from left
to right, the sequence includes the reconstruction result, diffuse
shading, specular shading, and geometry.

7. Additional results

Here we provide more results to illustrate the effectiveness
of our method. Fig. 10 - 14, Fig. 15 - 19, Fig. 20 - 22 are
results under 3-view settings, 5-view settings, and 10-view
(low-view) settings, respectively. Specifically, the rendering
results are calibrated as Sec. 2, correcting the overall color
deviations, such as the results of NeuFace [25] in Fig. 10.
In the Facescape dataset, only four subjects (122, 212, 340,
344) are cleared for publication. For the remaining sub-
jects, we have applied the mosaic technique to ensure their
anonymity.
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Figure 10. Comparison under a 3-view setting for Subject 12.
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Figure 12. Comparison under a 3-view setting for Subject 15.
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Figure 13. Comparison under a 3-view setting for Subject 17.
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Figure 14. Comparison under a 3-view setting for Subject 342.
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Figure 17. Comparison under a 5-view setting for Subject 212.
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Figure 19. Comparison under a 5-view setting for Subject 342.
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Figure 22. Comparison under a 10-view setting for Subject 344.
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