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Supplementary Material

7. Stereo4D Statistics

We collected around 110k clips from 6,493 Internet VR180
videos. The videos were curated from public YouTube con-
tent using the tag “VR180”, available under YouTube’s Stan-
dard License. We have released derived geometry, motion
data, and video links, under a CC license here.

Fig. 11 shows the camera translation distribution between
the first and last frame of each clip. Fig. 12 shows, from
left to right: (a) the distribution of x,y,z camera translations
(log scale), (b) the distribution of rotations, (c) a sample of
5000 camera trajectories, viewed from above, colored by
final camera orientation (red=right, cyan=left).

In Fig. 13, we measure the motion in terms of pixel dis-
placement projected onto the image frame. Measuring mo-
tion in pixel-space emphasizes motion that occurs closer to
the camera, since such motion yields larger pixel displace-
ments, while naturally de-emphasizing motion further from
the camera.

8. Ablations

Track optimization. Fig. 15 shows a top-down view of Fig
3. We tried multiple stereo depth methods when developing
our system, e.g., BiDAStereo [37] but it still shows jitter
and drift (left). That said, as more advanced stereo methods
become available, we can adopt them. Ablations (right):
w/0 Lstatic (static content reduces jitter from Lgynamic but
still drifts); w/o Lgynamic (dynamic trajectories are distorted
along camera rays by Lgtatic)-

Effect of time gap for DynaDUSt3R. We evaluate Dyna-
DUSt3R’s capability with regard to time gap A; = t; — tg
of input images. Fig. 14 shows motion error vs. input frame
gap, across 1k Stereo4D pairs. As the time gap increases,
the motion magnitude and uncertainty grows, leading to an
increase in error.

DynaDUSt3R motion head ablation. DynaDUSt3R uses
a separate motion head to predict motion for the pointmaps
MV~ Alternatively, one can also predict the deformed
points with the same point head by conditioning on the
time embedding. We compare 1) ours: predicting MVt
with motion heads; and 2) directly regressing PVt with
point heads and evaluate on the same Stereo4d test set in
Table 1. Using a single head to predict motion (2) results
in a drop in motion accuracy across all metrics: EPE;p]
= (0.1110 — 0.1401), 6951 = (65.07 — 59.19), 69191 =
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Figure 11. Camera statistics from Stereo4D. We measure the differ-
ence (in meters) of camera poses between the start and end frame
of each video clip as calculated by SfM.
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Figure 12. Camera statistics from Stereo4D. From left to right:
a) the distribution of X,y,z camera translations (log scale), (b) the
distribution of rotations, (c) a sample of 5000 camera trajectories,
viewed from above, colored by final camera orientation (red=right,
cyan=left)
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Figure 13. Scene motion statistics from Stereo4D. We measure
scene motion in terms of pixel displacement projected onto the
image frame. For each video, we measure the percentage of tracks
that have 3D trail length greater than 50 pixels. The 3D trail length
is measured by Eqn. 3.

(75.18 — 69.73). This is likely due to decreased decoder
capacity.

9. More qualitative comparisons

9.1. More results on held-out Stereo4D examples

Fig. 16 shows additional DynaDUSt3R predictions on the
Stereo4D held-out test set, extending Fig. 7 from the main
paper. Fig. 17 shows additional qualitative examples of mo-


https://console.cloud.google.com/storage/browser/stereo4d;tab=objects?inv=1&invt=AbsjhA&prefix=&forceOnObjectsSortingFiltering=false
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Figure 14. Model performance with different input time gap:
Motion error vs. input frame gap. As the time gap increases, the
motion magnitude and uncertainty grows, leading to an increase in
error.

tion comparisons on Stereo4D test set, extending Fig. 8 from
the main paper. Fig. 17 compares variants of Dyna-DUSt3R
trained on different data sources. The model trained on
PointOdyssey incorrectly predicts large 3D motions, while
the model trained on Stereo4D makes more accurate motion
predictions, closer to ground truth.

9.2. Additional track optimization examples

In Fig. 19, we illustrate estimated tracks for a video sequence
featuring a forward-moving camera and vehicles driving
towards the camera. Our initial 3D tracks derived directly
from RAFT depth, BootsTAP 2D tracks, and SfM camera
pose, show significant jitter for both dynamic (vehicle) and
static (ground) points. However, after applying our track
optimization, the ground points produce stable, static tracks,
and vehicle tracks become smooth and coherent.

10. Dataset curation details
10.1. Equirectangular videos

The raw videos that we collect (see examples in Fig. 18) are
natively stored in a cropped equirectangular format, which
differs from a full 360° equirectangular projection as the
horizontal field of view of the cropped format typically spans
180°—half of a full sphere. These videos often contain
metadata specifying the horizontal and vertical field of view.
For instance, metadata for a typical video might specify
startyaw = —90.0°, endyaw = 90.0°, startge = —90.0°,
endyr = 90.0°; Since many VR180 videos are designed
for an immersive VR experience, they are typically viewed
with headsets. Hence, the baseline between the left and
right cameras typically closely matches the average human
interpupillary distance of 6.3 cm.

10.2. Structure from motion

For ease of processing with standard 3D computer vision
pipelines, and to benefit from the wide FoV of the in-

put videos, we convert the videos from their native for-
mat (equirectangular projections) to a fisheye format for
camera pose estimation. We use a 140° field of view for
these fisheye-projected videos, because many equirectangu-
lar videos have a black fade-out/feathering/vignetting effect
applied at the boundary, as shown in Fig. 18. We found
that using wider FoV frames significantly improves camera
pose estimation in dynamic scenes. When using narrow FoV
projections, dynamic objects are more likely to occupy a
large fraction of the frame; when these dynamic foreground
objects are rich in features, they can confuse camera tracking
algorithms, leading to inaccurate camera poses that track the
dynamic object rather than producing true camera motion
with respect to the environment. In contrast, wide-angle
fisheye videos capture more background regions, which tend
to have stable features for tracking, yielding more reliable
camera poses.

We first use ORB-SLAM2’s stereo estimation mode [61]
to identify trackable sequences within the videos, utilizing
the method devised by Zhou et al. to divide videos into dis-
crete, trackable shots [119]. For each given shot, consisting
of frames (I;,...,I,), we estimate camera poses and rig
calibration via an incremental global bundle adjustment al-
gorithm similar to COLMAP [76]. We initialize the stereo
rig calibration to be that of a rectified stereo pair with base-
line 6.3 cm, but optimize for the calibration as part of the
bundle adjustment process, as in practice the stereo rig can
vary significantly from its nominal configuration. This pro-
cess yields a camera position c; and orientation R,; for each
frame ¢ (defined as the pose of the left camera), and a posi-
tion ¢, and orientation R, for the right camera relative to
the left (assumed to be constant throughout the shot).

10.3. Depth estimation

Depth estimation is first performed on a per-frame basis,
with disparity maps computed independently for each frame.

We use the estimated camera rig calibration c,, R, to
rectify the original high resolution equirectangular video
frames, ensuring that (1) the left and right views have cen-
tered principal points, (2) are oriented perpendicular to the
baseline, and (3) pointing in a parallel direction. We then
convert the equirectangular videos to perspective projections
for downstream predictions.

Disparity is estimated from optical flow [84, 90] between
the rectified left and right frames. The z-component of the
optical flow is used as disparity, which is converted to metric
depth using:

baseline x f

Depth = ®)

disparity
Here baseline = 0.063m, and f is the frame’s focal length.

Outlier Rejection. Several criteria are applied to filter
out unreliable pixels: Inconsistency between left and right
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Figure 15. Track optimization ablation, extending Fig. 3. SOTA video stereo method, BiDAStereo [37], still shows jitter and drift (left).
Ablations (right): wW/o Lstatic static content reduces jitter from Laynamic but still drifts; w/o Laynamic dynamic trajectories are distorted along

camera rays by Leatic.

Figure 16. More qualitative results on Stereo4D test set. Extending Fig. 7, we visualize image pairs and corresponding dynamic 3D point
clouds predicted by DynaDUSt3R trained on Stereo4D. Our method recovers accurate 3D shape and complex scene motion.

eyes: Disparity is rejected if the optical flow fails a cycle-
consistency check with an error exceeding one pixel. Depth
values exceeding 20 meters are considered invalid. Estimat-
ing accurate depth beyond a certain range requires sub-pixel
disparity estimation, and therefore the resulting depths are
usually very noisy. Negative flow values that shouldn’t occur,
but can, often due to errors in textureless regions. Large
vertical flow: pixels with a y-component of flow exceeding
one pixel are removed (as in our rectified stereo pairs cor-
respondences should have the same y-value, and violating
that epipolar constraint indicates uncertain matches). Oc-
clusion boundaries: Depth gradients exceeding a threshold
(threshold = 0.3) indicate occlusion boundaries and are
rejected. For a pixel location (z,y), depth gradients are
computed as:

grady = |Depth(z + 1,y) — Depth(z — 1,)|,

grady = |Depth(z,y + 1) — Depth(z,y — 1)|.

Pixels are rejected if grad, > threshold x Depth(x,y) or
grad, > threshold x Depth(z,y).

10.4. 2D tracks

We extract long-range 2D point trajectories using Boots-
TAP [17]. We run tracking on the left-eye video only. For
every 10 frames, we uniformly initialize query points on
image with stride 4. We then remove duplicated queries if
earlier tracks fall within 1 pixel of a query point.

10.5. Choice of FoV and resolution for perspective
projection

When converting the equirectangular videos to perspective
projections, we use two FoVs: 60° and 120°. Both perspec-
tive videos are set to a resolution of 512 x 512, the maximum
supported by BootsTAP. The 60° projection offers a higher
sampling rate in scene units, which improves the accuracy
of depth estimation and 2D tracks when measured in meters.
Additionally, it has smaller perspective distortion near the
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Figure 17. More qualitative comparisons of 3D motion in the Stereo4D test set. Extending Fig. 8, we compare variants of DynaDUSt3R
trained on different data sources. The Stereo4D-trained model also makes more precise motion predictions than the PointOdyssey-trained
model.

Figure 18. Example equirectangular stereo videos collected from the internet.
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Figure 19. Effect of Track Optimization. We compare 3D tracks on a challenging walking tour video sequence. In this clip (left), the
camera moves forward while vehicles drive toward the camera. We visualize the results across 16 frames, showing 3D trails left by both
dynamic and static points. Middle: Our initial 3D tracks, created directly from RAFT, BootsTAP and SfM camera pose, also exhibit
significant jitter for both dynamic (vehicle) and static (ground) points. Right: After applying our track optimization, the ground points yield
stable, static tracks, and vehicle tracks become smooth and coherent.

image boundaries. In contrast, the 120° projection provides with weight decay 0.95.
wider coverage, ensuring longer 2D tracks across the videos.

This trade-off allows us to balance data quality with spatial

coverage for downstream tasks, e.g. DynaDUSt3R. We take

the union of the 3D tracks derived from each of these videos

for DynaDUSt3R training supervision.

11. DynaDUSt3R training details

Dataloader. During training, we randomly sample two
frames from the training videos that are at most 60 frames
apart, at times tg and ¢1, (tp < t1). Additionally, we also
sample one auxiliary frame in between, at time t,,y, to <
taux < t1, for additional track supervision between the two
input frames. During training, we add data augmentation by
applying random crops and color jitter to the input images
and cropping the ground truth pointmap and motionmap

accordingly.
Training. The network takes input the two RGB images
as well as query times ¢, = {0, 1, 4251} and predicts the

pointmaps for the two input views and motionmaps for each
query t,. We supervise the network with losses defined in
Eqn. 6 and 7. We initialize our network with the DUSt3R
weights and initialize the motion head with the same weights
as the point head. We finetune for 49k iterations with batch
size 64, learning rate 2.5 x 1075, and optimized by Adam
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