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Supplementary Material

Overview. This supplementary material provides de-
tailed insights into the implementation and data process-
ing methodologies of our proposed AeSPa for accelerated
MRI reconstruction. Sec. 1 presents quantitative com-
parisons with baseline methods, emphasizing trade-offs in
computational time and reconstruction quality. Sec. 2
highlights qualitative results on FastMRI knee and brain
datasets, showcasing AeSPa’s robustness across sampling
strategies and reduction factors. Sec. 3 covers implemen-
tation details, including model configurations, training se-
tups, and data processing techniques such as normalization
and filtering for standardized evaluation.

1. Additional Quantitative Results
R = 8 / Gaus. A5000 × 1 (reported) A6000 Ada × 1
Model (iter) AesPA (2000) SPICER AesPA(2000) SPICER AesPA(300)

Time 12m 10m 7m 8s 5m 12s 1m 9s
PSNR↑ 32.57 29.50 32.57 29.50 30.01

Table 1. Reconstruction time for various settings.

R = 4 / Gaus. (Knee) PSNR↑ SSIM↑
AeSPa 35.99 0.899
w/o DSS 33.02 0.837
w/o cross-channel constraint 34.14 0.825
w/o DSS & cross-channel constraint 32.11 0.823

Table 2. Ablation study on DSS and cross-channel constraint.

Setting R = 4 / Uni. R = 8 / Uni. R = 4 / Gaus. R = 8 / Gaus.
AeSPa 34.23 (+0.65) 28.37 (+1.18) 35.99 (+0.29) 32.57 (+0.25)

w/o AKSM 33.58 27.19 35.70 32.32

Table 3. AKSM ablation study on the FastMRI Knee dataet.

masking ratio PSNR ↑ SSIM ↑
70% 32.57 ± 3.24 0.853 ± 0.05
50% 32.32 ± 3.29 0.852 ± 0.05
30% 32.33 ± 3.26 0.853 ± 0.05
10% 32.07 ± 3.71 0.843 ± 0.06
5% 31.59 ± 3.79 0.836 ± 0.07
0% 29.91 ± 4.48 0.806 ± 0.09

Table 4. Ablation study results on the masking ratio of k-space
in the training process for the FastMRI knee dataset using 1D
Gaussian sampling with R = 8.

Table 1 presents the comparison of reconstruction time and
performance across various settings. This table compares
the execution time of the AesPA and SPICER models using

Figure 1. Qualitative results in k-space. The first column shows
the undersampled k-space (1D Uniform, R = 4), the second col-
umn depicts ksel, and the third column represents the fully sam-
pled k-space.

two different GPUs (A5000 and A6000 Ada) while evalu-
ating the reconstruction quality in terms of PSNR. As re-
ported in our manuscript, on the A5000 GPU, AesPA re-
quires 12 minutes, while SPICER takes 10 minutes. When
using the more advanced A6000 Ada GPU, the overall
speed improves, with AesPA completing in 7 minutes and 8
seconds and SPICER in 5 minutes and 12 seconds. These
results are based on 2000 iterations, targeting the best pos-
sible performance. However, by optimizing the number of
iterations, AesPA can achieve a reconstruction time of just 1
minute and 9 seconds with only 300 iterations, demonstrat-
ing that reconstruction can be completed in approximately
1 minute per slice.
Our cross-channel constraint differs conceptually from
DSS: considering that each coil image is the product of
the true MR image and its spatially varying sensitivity map,
the RSS (Root Sum of Squares) of sensitivity maps across
channels should theoretically yield a ones matrix. Our con-
straint enforces this physical property at each pixel position,
while DSS simply normalizes the maximum value of each
coil channel to 1 (channel-wise). This physically-motivated
cross-channel constraint strongly regularizes sensitivity es-
timates, resulting in a more accurate sensitivity map. As
shown in Table 2, the cross-channel constraint significantly
improves reconstruction performance over DSS alone.
As shown in Table 3, AKSM improves PSNR by up to
+1.18dB. AKSM selectively determines important k-space
in non-sampled line, its impact was slightly limited in Gaus-
sian sampling where significant k-space lines are already
acquired, resulting in modest PSNR improvement.
An ablation study on the k-space masking ratio in IKM,



summarized in Table 4, demonstrates that a 70% masking
ratio achieves optimal performance, highlighting the effi-
cacy of selective k-space data reduction in preserving re-
construction fidelity.

Metric Uniform1d Gaussian1d
R = 4 R = 8 R = 4 R = 8

E2E-VarNet PSNR↑ 34.89 ± 2.25 31.04 ± 2.66 35.01 ± 2.06 31.76 ± 2.22
SSIM↑ 0.944 ± 0.01 0.893 ± 0.02 0.947 ± 0.01 0.902 ± 0.02

Ours PSNR↑ 33.37 ± 4.01 27.54 ± 3.60 33.98 ± 4.16 28.47 ± 3.39
SSIM↑ 0.889 ± 0.05 0.789 ± 0.07 0.899 ± 0.06 0.801 ± 0.07

Table 5. Quantitative results of our methods with supervised
learning method.

As presented in Table 5, we compared our method to
pretrained E2E-VarNet, a widely used supervised learning
model for MR reconstruction. To ensure a fair compari-
son with the pretrained model, we applied the preprocess-
ing method used in FastMRI to our method during the ex-
periments. While our approach showed slightly lower per-
formance in terms of PSNR and SSIM compared to E2E-
VarNet, it is important to note that E2E-VarNet relies on
extensive fully-sampled training data, which is often chal-
lenging to obtain in real clinical settings. In contrast, our
method offers a distinct advantage with its ability to per-
form scan-specific reconstruction without the need for pre-
trained datasets, underscoring its practical utility.

2. Additional Qualitative Results
Figure 1 illustrates the qualitative results of k-space for dif-
ferent sampling strategies. The first column shows the un-
dersampled k-space obtained using 1D Uniform sampling
with a reduction factor of R = 4. The second column de-
picts ksel, which represents the selectively reconstructed k-
space. The third column displays the fully sampled k-space
as the ground truth. This comparison highlights the effec-
tiveness of ksel in bridging the gap between undersampled
and fully sampled k-space, preserving essential structural
details.

Figures 2, 3 and 4 illustrate the qualitative results of ac-
celerated MRI reconstruction on FastMRI knee and brain
datasets using different sampling strategies and reduction
factors. Figure 2 compares methods at a reduction factor
of R = 4 with 1D Gaussian random sampling for knee MRI,
where AeSPa (Ours) achieves the highest PSNR (33.61) and
SSIM (0.907), demonstrating sharper details and fewer ar-
tifacts compared to other methods. Figure 3 presents sim-
ilar results for R = 8, showing AeSPa’s consistent superi-
ority in preserving fine structures with PSNR (34.09) and
SSIM (0.899). Figure 4 shifts focus to brain MRI with R =
4 using 1D Uniform sampling, where AeSPa outperforms
all baselines with a PSNR of 36.98 and SSIM of 0.964,
achieving clear edges and minimal noise. These results
highlight AeSPa’s ability to reconstruct high-quality im-

ages across various anatomical regions and sampling con-
ditions, outperforming both traditional and learning-based
approaches. Figure 5 shows the qualitative performance of
our model with reduction factors ranging from R = 8 to R
= 23 using 1D Gaussian random sampling. At R = 8, the
model achieves the highest PSNR (40.09 dB) and SSIM
(0.974). As the reduction factor increases, reconstruction
quality gradually decreases but remains robust, with PSNR
and SSIM stabilizing at 34.42 dB and 0.936 for R = 23.
This demonstrates the model’s resilience under extreme un-
dersampling.

3. Details

3.1. Implementations
In this paper, the experiments were conducted using an
NVIDIA RTX A5000, and the code was implemented based
on PyTorch. The coil combined image and Sensitivity Map
estimation model were implemented using U-Net as the
foundation, with the Mamba module added between the en-
coder and decoder. All models processed complex data by
splitting it into real and imaginary parts, using an input and
output format of (channel, height, width) × 2. The first
part was treated as the real part and the second as the imag-
inary part for model training. The learning rates for coil
combined image, the Sensitivity Map estimation model, and
AKSM were set to 5e-4, 5e-4, and 5e-5, respectively, with
the Adam optimizer. For training, the raw data from the
dataset was used after basic preprocessing as mentioned in
the data preprocessing section. For model evaluation, the
data was center cropped to 320×320 size, followed by max
normalization and a bandpass filter to assess model perfor-
mance. The Mamba model parameters used in AKSM were
dmodel = 640 (kspace height), dstate = 64, dconv = 640
(kspace height), and expand = 1. The Mamba model pa-
rameters for the U-Net were dmodel = 1024 (latent vector),
dstate = 16, dconv = 4, and expand = 2. Layer normaliza-
tion was applied after every Mamba module. In AKSM, to
use k-space as input to the Mamba layer, the data is flat-
tened from the form Rkx×ky×C×2 into a 1D sequence of
shape L ∈ RB×(C×2×ky)×kx, sequentially aligned along
the ky direction. Here, C represents the number of coils,
and 2 denotes the real and imaginary channels. The batch
size was 1, and the models were trained for 2,000 iterations
(T), with the inputs of the coil combined image estimation
model and Sensitivity Map Estimator updated every 1 and
10 iterations, respectively.

3.2. Data Processing
We normalized the k-space data by dividing it by the
maximum value of its corresponding coil-combined image,
which was obtained through inverse Fourier transform fol-
lowed by coil combination. This normalization strategy



Figure 2. Qualitative results for accelerated MRI reconstruction on the FastMRI knee data. Reconstruction was performed using 1D
Gaussian random sampling with R = 4.

Figure 3. Qualitative results for accelerated MRI reconstruction on the FastMRI knee data. Reconstruction was performed using 1D
Gaussian random sampling with R = 8.

ensures that the image domain values approximately fall
within the range of [0, 1]. During evaluation, all coil-
combined images from both comparison models and our
model were additionally processed with max normalization
to maintain the value range within [0, 1]. To remove noise
outside the FOV region, a bandpass filter was applied to
both the ground truth and reconstructed images (knee: [0.7,
130], brain: [0.8, 200]).



Figure 4. Qualitative results for accelerated MRI reconstruction on the FastMRI brain data. Reconstruction was performed using 1D
Uniform sampling with R = 4.

Figure 5. Qualitative results of our model with varying reduction factors. The performance is demonstrated for 1D Gaussian random
sampling with reduction factors ranging from R = 8 to 23.
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