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7. Dataset Information.
Objaverse [1] is the main dataset for our experiment, which
contains over 800K 3D objects. As the rendering process on
such a massive dataset is very time-consuming, we adopt
the pre-processed version sourced from the repository of
[8], which pre-filters over 260K samples. In this processed
dataset, every object is normalized to the voxel range of
[±0.5,±0.5,±0.5], and rendered to RGBA images in a res-
olution of 512 ∗ 512 ∗ 4, with 40 views in total. Our train-
ing data only comprises multi-view images and their cor-
responding camera poses, without any kind of original 3D
data.

8. Implementation Details.
Triplane. The triplane resolution is configured as 3×128×
128×16, where 16 represents the channels within each grid.
The first half of the channels is designated for encoding ge-
ometry information, while the remaining half is allocated
for encoding GS appearance details. Each triplane is ini-
tialized to random Gaussian noise with a standard deviation
of 0.01. This random initialization allows the triplane to
be decoded into random SDF values, subsequently leading
to the generation of diverse fragmented mesh faces. Upon
rasterization of these faces onto the screen, the geometry
loss facilitates swift removal of undesired faces. During our
experiments, we observed that this initialization method en-
ables faster convergence compared to zero initialization.

As for loss configuration, we configure w1 = 5.0, w2 =
1.0, w3 = 1.2, β = 0.2, γ1 = 0.2, γ2 = 0.1, γ3 = 0.01,
γ4 = 1.0 by experiments, corresponding to the loss function
described in Eq. 3, Eq. 4 and Eq. 5.
TriRenderer. As for the TriRenderer instroduced in Fig.1,
both the geometry decoder and the GS attribute decoder in-
side it are composed of linear blocks. In the GS attribute
decoder, there are 3 headers for GS splats scaling, opacity
and SH prediction, and the rotation is fixed by the mesh
face normal as introduced in Section 4.2. All the GS at-
tribute headers are linear layers. We set SH degree to 1 in
all experiments, which is enough to obtain satisfying results
on Objaverse.

9. Simple Check of Triplane and VAE.
To better investigate whether it is reasonable to encode tri-
plane using convolution-based methods, we simply scale
the channel value of trained triplanes to pixel range and vi-
sualize them as shown in Fig. 8, where clear shapes from 3

different views can be observed. As for the VAE reconstruc-
tion, a slight blur in the reconstructed pictures are observed
as Fig.9, which is inevitable but acceptable.
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Figure 8. Channel visualization of sample triplanes.

10. Comparison with GaussianCube.

GaussianCube [9] is the most recent paper aiming to solve
a similar task of ours, which can generate 3D GS directly
without SDS or reconstruction from images. As for now, the
authors of GaussianCube have not release their pre-trained
models and runnable code for text-to-3D task on Objaverse
dataset. Therefore, we just use the images provided in their
paper for a qualitative comparison. The generated samples
are shown in Fig. 10. Our method produces more diverse
and detailing generation results.



Figure 9. Triplane reconstructed by VAE. Left: ground truth. Right: reconstruction.

A yellow tea kettle.

A pair of sunglasses with blue lenses.

A blue and yellow fish with a big eye.

A wooden bench.

Ours(without SDS refinement)GaussianCube

A blue and white cartoon character
of Sonic the Hedgehog.

GaussianCube Ours(without SDS refinement)

A blue and white cartoon character
of Sonic the Hedgehog.

（a）Generation with same prompts.

（b）Generation with slightly different prompt, for we do not include “Sonic the Hedgehog” in our training data.

Figure 10. Comparison with GaussianCube.



11. More Generation Results and Comparisons
with LN3Diff and 3DTopia (without SDS
Refinement).

More generated samples compared with LN3Diff [4],
3DTopia[2] and BrightDreamer[3] are rendered as Fig. 11∼
Fig. 14, where LN3Diff and 3DTopia are both direct gener-
ation methods exploiting Triplane as intermediate represen-
tation. The main differences between our work and these
two alternatives are discussed as follows.

First, while we select 3D GS as our 3D representation,
LN3Diff and 3DTopia use NeRF as their target 3D repre-
sentations, which unavoidably involves some disadvantages
of neural field such as artifacts, implicitness for further edit-
ing, and slower rendering speed. As shown in these figures,
our work enables a generation with explicit 3D GS, and fast
rendering with a minimum of artifacts, especially compared
with 3DTopia.

Second, we use explicit mesh surface for GS point bind-
ing, which enables more accurate texture projection. More-
over, different geometry losses help to constrain the mesh
to be clear and smooth. Therefore, our method produces
more detailing appearances without blurs compared with
LN3Diff and 3DTopia, which can be further examined by
zooming in the figures.

Moreover, there are several technical points are worth a
discussion. For example, different from our end-to-end tri-
plane VAE, LN3Diff adopts a image-to-triplane encoding.
It is possible that the decoders cannot capture enough fea-
tures from sparse input images for retrieving a high quality
3D object. Also, in such framework, different images sets of
an unique object may corresponds to different latent codes,
which is also a potential risk for following learning on la-
tent space. As for 3DTopia, we guess that the absence of
supervision for appearance detailing may the key reason for
its blur output. In our method, the perceptual losses are in-
corporated in both the triplane encoding procedure and the
VAE training.

12. Comparison with BrightDreamer.

BrightDreamer [3] is another methods that claim to gen-
eration 3D GS directly. However, it is trained on single
class datasets created by Instant3D [5], we cannot compare
it with ours using various prompts as before. Therefore,
we just pick several cases for demonstration. As shown in
Fig.15, while BrightDreamer also enables fast and direct GS
generation, its output are more over-saturated, blurrier, and
with more artifacts.

13. Additional Ablation Studies and Discus-
sions.

Attempts to Simplify the Pipeline. 1) Unification of the
geometry and appearance branches. We found that the
losses of 2 branches interfere with each other, which leads
to worse reconstruction in both triplane fitting and VAE
training process. 2) We attempted to use an autodecoder
as [7] to simplify the pipeline, which omits the triplane fit-
ting and directly learn the latents instead. The experiments
demonstrate a very slow convergence compared with our
current design.

Texture reconstruction at 50K step
(projected to GT geometry)Geometry reconstruction metric(occupancy recall ↑) within 50K steps

Ours(triplane fitting + VAE) AutoDecoder Ours AutoDecoder

Some visual results of the mesh. Due to the direct regres-
sion of 3D shape using only 2D images, the result of stage
1) in Fig.1 a) is slightly worse than the methods using 3D
supervision. Therefore, some unsmoothness in the gener-
ated 3D shapes can still be observed.

Preliminary Experiments on Image-Conditioned Gener-
ation. Although image-to-3D is a very popular route, since
it relies heavily on image generation, and our initial target
was to validate the effectiveness of triplane representation
and TriRenderer, we chose text-to-3D as our primary task.
We also conducted some preliminary training on image-to-
3D, following the approach of LN3Diff by using CLIP fea-
tures of images as conditions for generation. In practice, we
found that since images provide richer guidance than text,
image-to-3D is actually an easier task compared to text-to-
3D.

Input Image Input Image Input Image

Classifier Guidance. We found that the classifier guidance
is an important factor for geometry completeness in LDM,
and we use CFG between [5.0, 15.0] to avoid fragmental
shapes.
Discussion on Limitations.1) While our framework does
not directly bootstrap on pre-trained 2D models, it may
leverages their capabilities through image conditioning and
SDS postprocessing. 2) As for the generation quality, the



training data is the main bottleneck. There are many low-
poly even strange objects in Objaverse and it is hard to
screen them. Minor artifacts may appear in output, but our
explicit 3D representation allows for straightforward post-
processing (e.g., erosion/dilation) to address this issue. 3)
As for SDS, we use it as an optional postprocess. We will
explore alternative variants in future work to address its own
limitations, e.g. ISM proposed in LucidDreamer [6].
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Figure 11. More generated samples (without SDS Refinement).
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Figure 12. More generated samples (without SDS Refinement).
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Figure 13. More generated samples compared with other methods (without SDS Refinement).
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Figure 14. More generated samples compared with other methods(without SDS Refinement).



A cartoon character wearing a 
blue hat, overalls, and gloves.

A cartoon character wearing a 
blue hat, overalls, and gloves.

A cartoon man with pink
hair and a purple outfit.
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Figure 15. Case comparison with BrightDreamer.


