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Supplementary Material

1. Two-view Geometry

We demonstrate that our method is applicable to various
omnidirectional downstream tasks, including pose estima-
tion and 3D reconstruction. From the dense correspon-
dences and the certainty map produced by EDM, we can
estimate the essential matrix and the relative pose. Using
this predicted relative pose and dense correspondences be-
tween a pair of omnidirectional images, we can construct
the dense 3D reconstruction through spherical triangula-
tion. To address spherical triangulation, we simply solve
the closed-form expression [4],

S x (R(X — C)) =0, (1)

where S = (57, 5Y,5%) is the 3D Cartesian coordinates,
R € SO(3) denotes the orientation of the camera, X rep-
resents the target 3D point, and C indicates the camera po-
sition. The cross product can be expressed using a skew-
symmetric matrix, leading to the following equation,

S7r3T(X — C) — $*r'T(X — C) = 0,
Svr3t(X — C) — $*r*'(X — C) =0, )
Ser*T (X — C) — (X — C) =0,

where r'T denotes the ith row of R. To determine the target
3D point X, we can estimate the two-view geometry using
the linear equation AX = b. This equation can be solved
by the pseudo-inverse method, considering two omnidirec-
tional cameras M and N,
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The results of 3D reconstruction are shown in Fig. 1 and
Fig. 2.

2. Further Qualitative Results

2.1. Matterport3D

We provide additional qualitative results for Matterport3D,
as shown in Fig. 3 and Fig. 4. In Fig. 3, we present the re-
sults of RoMa [3] instead of DKM, differing from the main

paper.
2.2. Stanford2D3D

There are many occluded regions due to narrow corridors
in the scenes. However, EDM, which is trained on Mat-
terport3D, has the capability to handle these regions with
certainty estimation, as shown in Fig. 5.

2.3. EgoNeRF and OmniPhotos

As the environments of EgoNeRF and OmniPhotos dif-
fer significantly from the Matterport3D dataset, there is a
slight performance degradation. However, comparable per-
formance maintained with certainty estimation, as shown in
Fig. 6 and 7.



Figure 1. 3D geometry of Matterport3D using matches and certainties produced by EDM. These point clouds result from spherical
triangulation with estimated poses between two omnidirectional images.



Figure 2. 3D geometry of Stanford2D3D using matches and certainties produced by EDM. These point clouds result from spherical
triangulation with estimated poses between two omnidirectional images.
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Figure 3. Qualitative results on Matterport3D. The blue lines represent the results of matching points from SPHORB [11]; the green lines
correspond to SphereGlue [5]. EDM demonstrates more robust performance compared to other methods.
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Figure 4. Qualitative results on Matterport3D.
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Figure 5. Qualitative results on Stanford2D3D.



Figure 6. Qualitative results on EgoNeRF.

Image Warp Image Warp

Figure 8. Failure cases.



3. Thorough Discussion on Limitations and
Future Work

In this section, we provide a thorough discussion of lim-
itations and future work associated with our study. As our
work is the first to develop a dense feature matching method
for omnidirectional images, we believe this discussion will
advance this research direction and offer deeper insights for
the 360° imaging research community.

3.1. Runtime Evaluation

EDM’s runtime is almost the same as the DKM [2] method
because EDM includes an additional coordinate transforma-
tion between layers without requiring extra learning param-
eters. Both DKM and EDM take approximately 0.24 sec-
onds per frame pair on a 3090 GPU. Comparing the run-
time between sparse matching, such as SphereGlue [5] and
dense matching is somewhat challenging due to differences
in feature extraction and the number of matches. Sparse
matching requires feature extraction before matching, and
SphereGlue involves a local planar approximation to cre-
ate multiple tangential images (perspective images) during
feature extraction, which takes about 3.2 seconds. The in-
ference speed for matching itself depends on the number of
extracted features. In most cases, the number of features is
much smaller than in dense matching, making it faster than
0.2 seconds.

3.2. Rotational Diversity in Training Data

Our primary training dataset, Matterport3D [1], consists of
indoor scenes captured with vertically fixed cameras. As a
result, images with extreme rotations do not perform well
in EDM, as shown in Fig. 8. We believe this problem can
be mitigated by collecting more diverse training data, in-
cluding images with various rotational angles, and by ap-
plying additional rotational augmentation techniques dur-
ing the training process. These steps would enhance the
model’s ability to handle a wider range of image orienta-
tions effectively.

3.3. Encoder Choice and Distortion Compensation

In this paper, we use a ResNet encoder for multi-scale fea-
ture extraction. While distortion-aware approaches [0, 8, 9]
exist, these methods did not yield satisfactory results in
our experiments and required significant computational re-
sources. Consequently, we employed ResNet with spherical
positional embeddings to compensate for distortion without
adding extra trainable layers. This approach demonstrates
promising results, however, feature extraction does not fully
address distortion issues. In the future, we will extend our
work to develop more efficient encoders capable of han-
dling distortions.

3.4. Utilization of Foundation Models

In dense matching tasks for perspective images, leveraging
foundation models for coarse features [3] has shown better
performance compared to sharing coarse-fine features using
a ResNet encoder [2]. In this paper, our primary goal is to
demonstrate the potential of a dense matching method for
omnidirectional images. We believe that adopting different
foundational models, as Edstedt et al. [3] did, could improve
our framework. We plan to train foundation models such as
DINOV2 [7] or CroCo [10] on omnidirectional images and
integrate these into our approach.
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