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Supplementary Material

A. Implementation Details

A.1. Additional Experimental Setups

We used VGG16 and ResNetl8 architectures for experi-
ments on small-scale datasets, CIFAR-10 and SVHN. Also,
we employed ResNet50 as the classifier for additional large-
scale datasets, ImageNet and CIFAR-100. The hyperparam-
eter ¢ was set to 0.01 for small-scale datasets and 0.1 for
large-scale datasets. As adversarial training methods, we
adopted Madry-AT [28], TRADES-AT [52], and MART-
AT [42]. For TRADES-AT and MART-AT, the original reg-
ularization values of A = 6.0 and A = 5.0, respectively,
were set. During training, we allocated 100 epochs for AT
(pre-training), 20 epochs for pruning, 40 epochs for sub-
model fine-tuning, and 80 epochs for ensemble learning.

A.2. Detailed Descriptions on Adversarial Pruning

As described in Sec. 3.1, following HARP [53], we dy-
namically learned the optimal layer-wise compression rates
along with importance scores to construct a pruning mask
M that maximizes adversarial robustness while satisfying
the target sparsity constraint. The core objective is for-
mulated as a min-max optimization problem, as shown in
Eq. (6). Here, £, represents the adversarial robustness loss
based on adversarial training (AT), and £, is the global
compression control loss that ensures the overall sparsity
aligns with the target compression rate.

To explain the pruning process in greater detail, each
layer [ is associated with a binary pruning mask M,
which determines the pruned parameters. This mask is com-
puted using a learnable importance score matrix (") and
the layer-wise compression rate ¢(Y). A pruning threshold
a® =1 — ¢ is derived, and parameters with importance
scores below this threshold are pruned:

MO =1 {10 > pa®, 10) (23)

Here, P(a¥, 1) represents the percentile calculated
based on the pruning threshold Y and the importance
scores (). The compression rate of each layer () is pa-
rameterized using a learnable compression quota (") and a
sigmoid-based activation function g(r). The resulting val-
ues are constrained within the range [amin, 1], as expressed
below:

a = g(r®) = (1 — ampn) - sig(r?) + amin (24)

Such dynamic control prevents excessive pruning of any

specific layer by ensuring that the pruning threshold satis-
fies ) > apin.

To align the overall compression ratio with the target
sparsity a;, the compression loss £, adjusts the deviation
as follows:

L,(6 ® M, a;) := max (ﬂ - 1,0) (25)
ar - [|0]hh

where ||60]|1 represents the number of non-zero parame-
ters remaining after pruning.

A.3. Detailed Descriptions on Dynamic Inference
Ensemble

As mentioned in Sec. 4.4, the core of Dynamic Inference
Ensemble (DIE) is to determine the optimal stopping point
z, for a given sample x, maximizing robustness while en-
suring computational efficiency. In more detail, the proba-
bility that all models remain active up to and including step
t is defined as:

t—1
St =1->Y a (26)
i=1

which represents the likelihood that all models have partic-
ipated in inference until step ¢. The conditional probability
q: of stopping inference at step ¢, given that inference has
not stopped prior, is expressed as:

_S(t) - S(t+1)

=0 27)

qt

The sequential decision-making process at each step aims
to optimize the probability z; to identify z,, where z; is
derived as:

t—1
z=a [(1-a) (28)
=1

In this context, ¢, is computed based on the predictive
uncertainty and prediction confidence at each step. The pre-
dictive uncertainty is evaluated using the Kullback-Leibler
(KL) divergence between the intermediate ensemble predic-
tions at step ¢ and step ¢ — 1. Specifically, the KL divergence
quantifies the change in the probability distributions of the
predictions, reflecting how the ensemble output evolves as
additional models contribute. Mathematically, the predic-
tive uncertainty at step ¢ can be defined as:

Uncertainty; = KL(3, .| \g@;}) (29)



Table 4. Comparison of various AP methods and EED on CIFAR-100 and ImageNet datasets when sparsity rate s, = 90%

Setting CIFAR-100 Imagenet
Clean PGD AA  C&W DF Speedup | Clean PGD AA  C&W DF Speed up | Prams
AT[28] 6437 36.29 28.07 30.18 39.80 1.00x 60.25 3238 28.79 30.67 34.54 1.00x 25.6M
R-ADMM[49] | 61.38 31.23 21.85 24.04 30.42 2.43x 3526 1435 11.01 1235 13.53 2.41x
HYDRA[35] | 62.10 3352 24.12 2620 33.94 2.80x 49.44 2375 19.88 21.60 23.14 2.73x
RST[11] 61.14 29.81 20.15 21.38 2845 2.98x 27.09 1223  10.09 1122 12.34 2.96x
Resnet 50 MADI[22] 56.88 30.59 21.53 2355 3097 2.55x 3462 14.67 11.24 1242 13.47 2.60x
Flying Bird[2] | 60.03 33.18 2491 24.19 3226 2.75x 4839 2305 18.14 1933 17.65 2.56x 2.6M
HARP[53] 62.51 3340 2536 27.25 34.20 2.87x 55.21 27.10 2257 2462 2557 2.88x
TwinRep[24] 62.31 3408 2444 2892 3373 2.86x 5246 2673 2475 2437 24.68 2.67x
EED(ours) 63.60 3629 26.79 28.01 37.14 2.90x 5841 30.54 26.89 27.15 29.92 2.84x
AT[28] - - - - - - 83.29 6223 51.34 58.65 47.29 1.00x 44.6M
Flying Bird[2] - - - - - - 7256 61.32 4894 5773 48.24 2.61x
Resnet 101 HARP[53] - - - - - - 7344 6278 5073 5886 48.16 2.63x 45M
TwinRep[24] - - - - - - 7272 62.14 4946 5647 47.71 2.80x ’
EED(ours) - - - - - - 74.10 64.66 5242 60.92 51.83 2.79x
Table 5. Comparison of various AP methods and EED via sparsity rate on ResNet18 architecture.
Setting CIFAR-10 SVHN
Clean PGD AA C&W DF Speedup | Clean PGD AA C&W DF Speed up | Prams
| AT[28] | 87.05 56.14 48.02 57.60 53.10 1.00x | 9337 5627 50.14 5885 59.80 1.00x | 11.2M
R-ADMM[49] | 82.14 54.10 4623 5627 4580 1.36x 82.40 4953 4452 50.12 41.05 1.34x
HYDRA[35] 85.67 5458 47.12 5698 50.30 1.28x 91.12  53.47 4583 50.27 46.58 1.26x
RST[11] 72.55 49.19 42.03 4270 38.09 1.52x 78.12  42.09 34.62 5207 38.14 1.54x
. — 50% MADI[22] 7733 5321 4445 5721 43.12 1.37x 9256 51.04 42.18 5534 49.22 1.31x
sr ° | Flying Bird[2] | 83.02 53.18 45.13 5733 48.02 1.24x 91.58 52.14 4637 57.04 5321 1.27x 5.6M
HARP[53] 86.32 5529 4693 5790 50.41 1.34x 92.13 5329 47.52 5726 54.08 1.36x
TwinRep[24] 81.45 54.13 4845 57.82 48.27 1.30x 92.69 53.05 4722 57.16 54.43 1.32x
EED(ours) 88.07 57.83 5235 5792 53.12 1.64x 93.15 5574 50.18 5837 56.05 1.63x
R-ADMM[49] | 81.83 5091 45.13 53.61 42.17 1.54x 7824 5032 4521 5136 42.28 1.55x
HYDRA[35] | 8421 5340 46.03 5640 47.29 1.56x 91.08 53.18 4534 51.68 47.12 1.52x
RST[11] 63.89 42.67 3431 3505 3152 1.78x 7737 4321 3279 53.14 30.06 1.79x
s — T0% MADI22] 7526 51.85 4219 56.70 40.72 1.68x 91.25 5137 43.11 5642 4533 1.63x
o | Flying Bird[2] | 82.74 5246 4325 57.01 46.18 1.59x 91.62 5209 4725 57.12 5027 1.63x 3.4M
HARP[53] 8540 5471 4510 57.56 48.35 1.65x 9242 53.19 46.11 5728 52.09 1.71x
TwinRep[24] | 79.82 52.77 45,53 5722 47.01 1.70x 9236 5327 47.13 5649 51.43 1.69x
EED(ours) 8645 5632 49.16 57.51 52.74 1.77x 92.85 5516 50.32 58.68 56.24 1.79x
R-ADMM[49] | 81.25 48.00 4392 49.17 39.11 1.68x 7481 4973 3740 5262 43.40 1.63x
HYDRA[35] 7736 5292 4374 49.64 45091 1.77x 91.06 5222 47.62 55.13 46.13 1.74x
RST[11] 61.02 4101 1838 51.02 26.82 1.86x 8239 4629 3635 52.65 39.27 1.83x
5. — 80% MADI22] 74.18 5038 4127 54.17 38.44 1.69x 9284 51.65 39.87 59.80 44.72 1.70x
T ° | Flying Bird[2] | 81.07 51.62 4441 56.08 4529 1.79x 90.21 52.06 4201 5730 52.23 1.76x 22M
HARP[53] 83.84 5256 4536 56.57 47.04 1.81x 92.60 54.16 45.89 5728 51.24 1.80x
TwinRep[24] | 77.26  52.04 43.52 56.60 46.18 1.82x 9296 53.83 4473 5626 48.61 1.78x
EED(ours) 86.13 55.71 48.13 57.03 51.97 1.86x 93.15 55.74 50.18 5837 56.05 1.85x
R-ADMM[49] | 80.54 47.41 43.68 45.05 34.78 2.17x 84.34 5191 3840 4946 4287 2.23x
HYDRA[35] 76.74 4742 4334 4481 44.68 2.49x 88.71 5249 44.12 49.61 45.18 2.43x
RST[11] 60.92 3824 1431 2698 2519 2.63x 7490 3643 3416 38.03 38.72 2.68x
6. — 90% MADI22] 73.67 49.02 41.10 46.82 36.75 2.29x 89.42 4429 3746 4890 41.13 231x
r ° | Flying Bird[2] | 80.69 51.80 4649 47.12 49.95 2.42x 91.60 56.36 39.81 54.01 5241 2.36x 1.IM
HARP[53] 83.38 5041 4540 47775 4853 2.33x 90.70 5492 4539 5359 50.16 2.29x
TwinRep[24] | 76.37 50.82 4293 5224 4472 2.36x 88.90 53.06 46.71 5022 48.34 2.38x
EED(ours) 83.26 52.14 46.85 56.77 50.21 2.51x 91.74 55.16 47.32 53.81 53.57 2.45x
R-ADMM[49] | 71.42 4231 4256 3991 3141 2.94x 6491 4355 3699 3838 40.15 3.07x
HYDRA[35] | 7221 4584 4245 43.05 44.03 3.12x 8571 50.56 4529 4553  46.92 3.19x
RST[11] 4890 1993 16.76 18.66  15.79 3.58x 61.55 2590 2394 2639 28.58 3.47x
5 — 95% MADI22] 5890 4129 3896 4147 37.08 2.82x 86.40 3562 2490 31.79 3747 2.88x
" Flying Bird[2] | 7540 45.63 46.10 42.68 44.79 3.10x 91.14 50.61 4743 4501 46.70 2.95x 0.6M
HARP[53] 7713 5041 4540 47.75 48.53 3.39x 9275 5521 4595 513 4740 3.19x
TwinRep[24] 6497 4758 4147 4392 45.03 3.46x 88.59 50.62 47.16 5231 47.35 3.37x
EED(ours) 7436  48.09 45.69 4254  46.22 3.27x 90.76 5274 47.19 4723  46.99 3.30x




Table 6. Evaluation of EED with various AT methods on CIFAR-
10 dataset when s, = 80%

When this value exceeds a certain threshold, it is considered
that the prediction is unstable. For prediction confidence,
we evaluated the confidence of the ensemble prediction at

Speed

step ¢ based on a specific threshold. The confidence calcu- )
U

‘ Setting ‘ Clean PGD AA C&W DF
lation utilizes the maximum probability of the softmax dis-

Madry[28] | 87.05 56.14 48.02 57.60 53.10 1.00x

tribution, which is described as: EED,.sy | 8613 5571 4813 5703 5197 1.86x

TRADES[52] | 85.30 57.21 5148 52.60 51.88 1.00x

Confidence; = max(softmaz(al))? (30) Resnetl8 | EED, qges | 83.84 5741 5153 49.65 5002 1.84
MART[42] | 86.16 57.72 49.39 50.53 51.59 1.00x
el EED 84.29 57.04 4853 4885 50.17 1.83x

Here, softmax () represents the class probabilities, and the mart
: Tito s . Madry[28] 82.70 54.49 4852 5491 5691 1.00x
square of the hlghe.st probability 1An(.ilcates the confidence in EED,.o0y | 8139 5426 4749 5327 53.94 179
the prediction. Ultimately, combining the above elements, VGG16 | TRADES[ST [ 8318 5572 49.00 5459 5789 1.00x

g+ can be defined as: EED;yqdes | 82.13 5479 4726 5198 56.30 1.80x

MARTI[42] | 7744 5751 4620 5138 59.56 1.00x
EEDmart 7745 57.14 46.16 51.44 5755 1.77x

gt = sig(a - Uncertainty, + b - Confidence;)  (31)

In this manner, ¢, is dynamically adjusted by incorporating
factors such as prediction uncertainty and confidence, en-
suring both efficiency and robustness.

B. Additional Experimental Results

B.1. Evaluation on Larger Datasets

Tab. 4 compares various AP methods and the proposed EED
under a specific sparsity rate s, = 90% condition, evalu-
ated on the CIFAR-100 and ImageNet datasets. In this ex-
periment based on the ResNet50 model, EED demonstrated
either superior or comparable performance to existing AP
methods across all major metrics. Notably, on the CIFAR-
100 dataset, EED achieved a clean accuracy of 63.60%,
showing the highest defense performance against various
attacks, including PGD, AutoAttack (AA), and DeepFool.
Furthermore, in the case of ImageNet, EED achieved a
clean accuracy of 58.41%, with 30.54% defense against
PGD and 26.89% defense against AA, demonstrating its
outstanding robustness.

Additionally, EED maintained efficient computational
speed while offering competitive performance compared to
AP methods. EED recorded an average speed-up of 2.90x
on CIFAR-100 and 2.84x on ImageNet, showing more
efficient utilization of computational resources compared
to previous methods. While HARP and TwinRep demon-
strated competitive performance, EED outperformed them
in terms of both robustness and efficiency. This highlights
EED’s ability to deliver high performance and computa-
tional efficiency even on large-scale datasets, underscoring
its scalability and practical applicability.

B.2. Evaluation based on Sparsity

As discussed in Sec. 5.3, this experiment compares vari-
ous AP methods with the proposed EED method via spar-
sity rates and then analyzes the performance on the CIFAR-
10 and SVHN datasets using the ResNet18 architecture.

Table 7. Evaluation of EED via ensemble combiner on CIFAR-10
dataset when s, = 80%

Speed

} Setting }Clean PGD AA C&W DF up

85.69 5538 4852 5627 52.58 1.88x

E mazx

ResnetlS} EEDgvg }86.13 55771 48.13 57.03 5197 1.86x

VGG16 EEDgvg | 81.39 5426 4749 5327 5394 1.79x
EEDnax | 80.83 5411 46.70 5345 5529 1.82x

The primary comparison factors are the accuracy, robust-
ness against various attacks, and the speed-up ratio, based
on the model’s sparsity rate (s;-).

According to Tab. 5, across sparsity rates ranging from
sy = 50% to s, = 95%, EED consistently outperforms
other AP methods, with particular emphasis on clean ac-
curacy and defense performance against PGD, AutoAttack,
and DeepFool. These results suggest that EED maintains ro-
bustness even in sparsely compressed models through effi-
cient and diverse ensemble strategies. At each sparsity rate,
EED enhances robustness by utilizing differentiated prun-
ing techniques and assigning diverse data subsets across
AP-based sub-models, while improving efficiency through
dynamic ensemble selection during the inference stage. Al-
though performance is expected to decrease as s, increases,
EED maintains relatively high and stable performance com-
pared to competing methods.

Notably, at a lower compression rate, i.e., s, = 50%,
EED showed overall higher performance than not only other
AP methods but also the pre-compressed AT model. For in-
stance, on the CIFAR-10 dataset, EED outperformed AT by
1.69% in PGD and 4.33% in AA. Moreover, EED demon-
strated significant inference speed-up, with a 1.64x speed-
up on CIFAR-10 and a 1.63x speed-up on SVHN com-
pared to other AP methods, reflecting a substantial improve-
ment in computational efficiency. This performance boost is
likely due to the impact of the DIE getting stronger as the



Table 8. Comparison of different ensemble sizes in EED on ResNet18.

‘ Setting ‘ CIFAR-10 SVHN
Clean PGD AA C&W DF Speedup | Clean PGD AA C&W DF Speed up
EED —; | 84.53 5327 4562 5543 45.18 1.61x 88.04 4891 4397 49.68 40.61 1.62x
EED —3 | 85.14 5429 46.85 5637 50.04 1.63x 90.76 5279 4518 50.02  46.22 1.63x
sp =50% | EED4—4 | 88.07 57.83 5235 5792 53.12 1.64x 93.15 55.74 50.18 5837  56.05 1.63x
EED,—5 | 8743 57.87 5283 57.19 52.68 1.65x 9271 5598 49.59 57.58 56.41 1.60x
EED —¢ | 8624 5621 51.89 56.12 52.81 1.59x 92.81 5321 49.14 56.53 53.32 1.57x
EEDy—; | 81.57 5342 4574 5571 45.24 1.74x 84.18 4897 43.89 49.82 40.73 1.72x
EEDg —3 | 84.22 54.11 4659 5622  49.88 1.78x 90.94 53.15 4552 4999 46.22 1.80x
sr =80% | EEDy—4 | 86.13 5571 48.13 57.03 51.97 1.86x 93.15 55.74 50.18 5837 56.05 1.85x
EED —5 | 84.87 5529 4792 56.78 51.53 1.83x 91.83 55.12 49.87 58.89 5543 1.86x
EED —¢ | 82.44 5403 46.72 5595 50.29 1.84x 89.75 5334 4638 55.12  50.89 1.83x
EEDg—1 | 79.77 4881 4293 5196 4548 2.36x 82.02 49.18 44.19 4785 40.72 2.31x
EED;—3 | 81.33 51.28 46.87 56.59 49.01 2.44x 90.78  53.12 4548 5193 48.23 2.33x
sp =90% | EED4—4 | 83.26 5214 46.85 56.77 50.21 2.51x 91.74 5516 4732 5381 53.57 2.45x
EEDg;—5 | 82.12 5192 46.67 5652 49.89 2.47x 9145 52778 4741 5228 51.04 2.40x
EED —¢ | 80.95 50.18 4432 5348 47.77 2.46x 89.86 51.06 4521 50.79 47.15 2.43x

ensemble size increases.

However, EED’s performance decreased as the compres-
sion rate increased, primarily due to the reduction in ensem-
ble diversity. Despite this, at s, = 90%, EED still outper-
formed most AP methods, and even at the extreme compres-
sion rate of s, = 95%, where methods like RST and MAD
showed significant performance degradation, EED demon-
strated robust defense performance with only minor perfor-
mance decline.

B.3. Evaluation based on other AT methods

According to Tab. 6, EED, when combined with existing
AT methods such as Madry-AT, TRADES-AT, and MART-
AT, maintained similar performance across clean and vari-
ous attacks (PGD, AA, C&W, DF), while achieving an aver-
age speed-up of 1.77x to 1.86x. Notably, in both ResNet18
and VGG16, EED successfully improved computational ef-
ficiency while minimizing performance degradation com-
pared to the base model. For instance, EED ;4 g7, com-
pared to MART-AT, showed a slight improvement in clean
accuracy on VGGI16, and defense performance against at-
tacks remains similar, while achieving a 1.77x inference
speed-up. This indicates that EED has high compatibility
with various AT methods and can be easily integrated with
other AT approaches, providing further model compactness
and better defense performance.

B.4. Average Combiner vs Max Combiner

As mentioned in Sec. 4.2, the final output of EED is com-
puted using an average operation. In this experiment, we
compared two ensemble output calculation methods: the av-
erage combiner h(z) = & 32V hi(z) and the maximum
combiner h;(z) = max;ec(n (R} (7).

For ResNet18, the average combiner (EEDavg) showed
relatively better performance in terms of clean accuracy,

as well as defense against PGD and C&W attacks. How-
ever, the max combiner (EEDmaxz) demonstrated stronger
defense against AA and DF attacks. In terms of speed-up,
the max combiner achieved a slightly higher improvement
of 1.88x. Similar trends were observed in VGG16, where
the average combiner provided more stable performance in
most cases, but the max combiner showed stronger defense
against certain attacks (C&W and DF).

The results in Tab. 7 demonstrate that both combiners
can enhance EED’s performance while maintaining its com-
pactness and efficiency. This suggests that both the average
and max combiners extend the diversity and flexibility of
EED, providing different advantages in specific attack sce-
narios.

B.5. Evaluation based on Ensemble Sizes

As mentioned in Sec. 4.1, we divide the training dataset
for pruning into multiple subsets, and assign each subset
to train a specific sub-model for the ensemble diversity. In
the main paper, we set the number of subsets, d, to 4, and
formed ensemble teams with 12 sub-models, denoted as
|EnsSet|. Here, we evaluated the impact of the ensemble
size on EED by adjusting d.

As shown in Tab. 8, when d = 1, i.e., when all sub-
models are trained on the same dataset and the number
of sub-models is small, we observed a general decline in
clean accuracy and defense performance against attacks.
This indicates that as the number of diverse sub-models in
the ensemble decreases, the ensemble’s diversity reduces,
which in turn limits the ensemble’s defensive capability.
This performance degradation becomes more pronounced
as the sparsity rate increases, which suggests that ensem-
ble diversity becomes increasingly important as the model
sparsifies.

On the other hand, as d increases, model diversity im-
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Figure 5. Parameter distribution in each layer of VGG16 pruned to 90% sparsity with AT.

proves, with d = 4 or d = 5 typically yielding the best
performance. These configurations strike a balance between
sufficient data sharing and the diversity of individual sub-
models, which maximizes defense performance against at-
tacks. However, when d was too large (e.g., d = 6), the
amount of shared data between sub-models decreased, lead-
ing to insufficient training data for each sub-model. Conse-
quently, model performance deteriorated, and defense ca-
pability weakened. This suggests that overly dividing the
dataset to increase the number of sub-models may prevent
individual models from learning essential core data, thereby
weakening the overall defense capability of the ensemble.
Therefore, selecting an appropriate value for d plays a
critical role in maximizing the defense performance and ef-
ficiency of EED, and it is necessary to maintain a balance
between data diversity and the amount of shared data.

B.6. Analysis on Pruning Score via Parameter Dis-
tribution

We used multiple pruning importance scores to promote
submodel diversity. In selecting the scores, we focused on
their widespread use and effectiveness and their distinctive-

ness from each other. Fig.5 illustrates the distribution of pa-
rameters across different layers of an adversarially trained
VGG16 model, which has been pruned to 90% sparsity on
the CIFAR-10 dataset. The figure focuses on analyzing the
effects of different pruning importance scores (NIS, ERM,
ASE, BNSF). These distribution differences are closely re-
lated to the strategy employed in EED, where each impor-
tance score is used to maximize the model’s diversity.

The parameter distribution varies significantly depend-
ing on the pruning importance score, with some criteria con-
centrating the distribution on specific layers, while others
form broader and more diverse distributions. This indicates
that each importance score emphasizes different patterns
during training, contributing to the model’s compressibility
and defense efficiency.

These differences help the sub-models generated by ap-
plying different pruning scores in EED to achieve greater
diversity and robustness. Since each sub-model in EED is
trained using a different pruning importance score, the di-
versity of the overall model pool is ensured. This, in turn,
mitigates the vulnerabilities of individual models and en-
hances the defense effectiveness.



Effect of A1 Effect of A2 Effect of w Effect of y
48.0 - AL 48.25 | - 22 481 o w 48 1 -y
g g 48.001 & 46 ] g
> 47.5 1 > > Pl
9 3 47.75 - 9 3
B c B =
3 S 47.50 4 3 3
8 4707 5 8 8 %
3 < 47.254 < 42 g
46.5 - 47.00 4 42 4
40 4
025 050 075 1.00 125 01 02 03 04 05 6 8 10 12 14 0 2 4 6 8
A A w ¥

Figure 6. Effect of each hyperparameters in EED.

B.7. Analysis on Hyperparpameters

Fig.6 illustrates the effects of various hyperparameters on
the accuracy of a classification model. The first graph shows
the AA accuracy as a function of A1, reaching its peak at 0.6.
The second graph depicts the effect of A2, where optimal
performance is observed at 0.3. The third graph presents the
accuracy corresponding to changes in w, with a maximum
accuracy achieved at 10. Lastly, the fourth graph illustrating
the effect of v shows the highest accuracy at 4. Collectively,
these results emphasize the significance of hyperparameter
tuning in optimizing model performance, which also indi-
cate the importance of regularization terms.

C. Other Ensemble Defenses

In Sec. 4.1, we have discussed the diversity loss term (Div)
and the regularization term (Reg) in existing ensemble de-
fense techniques. In this section, we briefly describe four
major ensemble-based adversarial defense methods, includ-
ing ADP [31], GAL [18], DVERGE [48], and SoE [7],
and evaluate the performance of EED, when applying the
Div and Reg terms used in these methods, along with the
DVERGE technique employed in the main paper.

C.1. ADP

ADP employs an ensemble approach through averaging, de-
fined as h(z) = + vazl hi(z). The base classifiers are
trained to minimize a loss function consisting of the cross-
entropy loss for each classifier, a regularization term based
on the Shannon entropy of the ensemble prediction, and a
diversity loss that encourages various predictions. The loss

function for the training example (x, y,,) is defined as:

Z Ceg(h

+5log Dw(hl(x), ha(x),...,h

Lapp(T,Yz) — aReg(h(z))

(32)
N (%), Yz)

Here, the Shannon entropy is Reg(p) = — Ziczl pi log(p;).
The diversity term D(hy, ho, ..., hy,y) measures the ge-
ometric diversity between the N distinct C-dimensional

probability vectors. To compute the diversity, a normalized
(C — 1)-dimensional vector h; is derived by removing the
element at the y-th position from h;, and these vectors are
stored as columns in the (C' — 1) x N matrix R~egy. The

~ T ~
diversity measure is computed as det(Regy Regy).

C.2. GAL

GAL proposes a loss function that considers both the pre-
diction diversity and gradient diversity among the base clas-
sifiers. The loss function for the training example (z, y.) is
defined as follows:

)Ihi())

Loa(x,yz) =

Z DKL(S

—alog

Z Z exp (JSD(si(z)|s5(x)))
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+
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VDo (s () [h; ()
(33)

where s;(z) is the soft label vector obtained by label
smoothing, and JSD is the Jensen-Shannon divergence.

C.3. DVERGE

DVERGE emphasizes the vulnerability diversity between
the base classifiers to provide better adversarial robustness.
For the i-th base classifier, the following is minimized:

Loverce (T, Yz) = leg(hi(x), ya)
+a Y By, )~picin) [les(hi(En, @ (@, 74)): ¥a, )]
J#i
(34)

Here, 7y, (1) reflects non-robust features.



Table 9. Evaluation of EED with various ED losses on CIFAR-10
dataset when s, = 80%

‘ Setting ‘Clean PGD AA C&W DF Sff;d
EEDaps | 8490 5423 4687 5512 5020 1.86x
Reanetts | EEDGAL | 8530 5470 4750 5575 5090 1.85x
EEDpyeres | 86.13 5571 48.13 5703 5197 186x
EEDsyz | 8585 5510 4790 5640 5210 182x
EEDapp | 8092 53.13 4583 5207 5229 1.8«
veale | FEDGaL | 8105 5379 4638 5252 5307 180x
EEDpyorare | 8139 5426 4749 5327 5394  1.79x
EEDgor | 8059 5395 4610 5311 5458 18Ix

C.4. SoE

SoE is based on vulnerability diversity and two training
phases utilizing different adversarial examples. The loss
function for the i-th base classifier h; is defined as:

N
£SOE(J7, ¢ :1;) = Z [BCE(h’J (y:1:7 %1)7 9; (r;’.l))
j=1

N ) (35)
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C.5. Analysis on Ensemble Defenses

We evaluated EED with various ensemble loss functions on
the CIFAR-10 dataset. The results shown in Tab.9 demon-
strate that EED has strong compatibility with a range of en-
semble defense strategies, delivering notable improvements
in adversarial robustness and inference speed. EED consis-
tently showed excellent performance against attack types
such as PGD, AA, C&W, and DF, with particularly high ro-
bustness observed when using vulnerability diversity terms
like those in DVERGE and SoE, which performed well
across all attack types.

D. Limitations and Future Work

The proposed Efficient Ensemble Defense (EED) enhances
the diversity of compressed models, maintains robustness
against adversarial attacks, and effectively reduces model
capacity. However, EED has a few limitations yet.

First, the training cost is relatively high. The process of
generating sub-models using multiple pruning metrics and
combining them into an ensemble can increase training time
compared to conventional Adversarial Pruning (AP). This
is an inevitable aspect of ensemble defense, but when com-
pared to ensembles using multiple base models, the cost is
significantly lower. Unlike AP, which requires a lot of cost
for fine-tuning, EED can address this by leveraging the en-
semble, thus mitigating the overhead during sub-model gen-
eration. However, when using large-scale datasets or com-

plex models, it can still be difficult to train models in envi-
ronments with limited computing resources.

Additionally, when applying extreme sparsity, as shown
in Sec. 5.3 and Tab.5, there is a tendency for model perfor-
mance to degrade. Although EED aims to use compressed
models for efficiency, applying excessively high sparsity
can lead to performance degradation. This happens because,
as sparsity increases, ensemble diversity decreases, which
diminishes the advantages of the ensemble approach.

Future research could explore several approaches to
overcome these limitations. First, optimization methods for
reducing training costs should be considered. In particu-
lar, efficient algorithms are required to reduce the compu-
tational overhead in the sub-model creation and ensemble
combination process. For example, techniques that optimize
parameter sharing during training or streamline the sub-
model selection process could help shorten training times.
Next, more refined pruning techniques need to be devel-
oped to address the performance degradation caused by
high sparsity. Current pruning methods may damage the
model’s structure and important parameters as sparsity in-
creases, so exploring ways to maximize compression while
minimizing performance loss is crucial. Additionally, tech-
niques that maintain diversity among sub-models, even with
high compression, could be developed.



