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Parameters Value

Spherical grid extent: ρ = 2.5m to 60m
θ = 75◦ to 125◦

ϕ = −180◦ to 180◦

Spherical cell size: ∆ρ = 0.1m, ∆θ = ∆ϕ = 0.5◦

Cartesian grid extent: x = −40m to 40m
y = −40m to 40m
z = −1m to 5.4m

Cartesian voxel size: ∆x = ∆y = ∆z = 40 cm or 20 cm

Reflection scale: α40 cm
r = 10−1

α20 cm
r = 5× 10−2

Transmission scale: α40 cm
t = 10−2

α20 cm
t = 10−2

Table I. Evidential mapping parameter overview. We report the
parameters used for the evidential grid mapping.

A. Spherical Grid Mapping Details

We normalize the reflections and transmissions by the
voxel volume ratio s(ρ, ϕ, θ) between the Cartesian
voxel volume Vcartesian and the spherical voxel volume
Vspherical(ρ, ϕ, θ) [15]:
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Vcartesian = ∆x∆y∆z. (19)

This normalization is necessary since the volume of the
spherical grid cells Vspherical(ρ, ϕ, θ) is not constant and
depends on the spherical coordinates (ρ, ϕ, θ). The integral
for the spherical volume Vspherical(ρ, ϕ, θ) corresponds to
the volume of a spherical voxel located around (ρ, ϕ, θ) with
a voxel size of (∆ρ,∆ϕ,∆θ). The volume of the Cartesian
grid cells Vcartesian is constant and can be calculated by
multiplying the grid cell dimensions (∆x,∆y,∆z).

We report the used parameters for the grid mapping in
Tab. I. They are selected to match the LiDAR’s field of view
on the nuScenes[2] dataset.

B. Subset Matrix
We explicitly calculate the matrix S from Sec. 4.1 given the
hypotheses defined in Tab. 1. Each row and column of the
matrix is associated with the hypothesis written next to it. A
matrix element Sij is one if the hypothesis of the column
j is a subset of the hypothesis of row i and zero otherwise:

S ∈ Rn×n : Sij = 1{ωj ⊆ ωi} , (20)

S =



F C1 ··· CC O Ω

F 1 0 0 0 0 0
C1 0 1 0 0 0 0
... 0 0

. . . 0 0 0
CC 0 0 0 1 0 0
O 0 1 1 1 1 0
Ω 1 1 1 1 1 1


. (21)

C. Inverse of Subset Matrix
In the following we prove that S is invertible for any choice
of hypotheses. Without loss of generality we sort the hypoth-
esis ω by cardinality |ω|, such that

|ωi| ≤ |ωj | ∀i < j, (22)

which puts smaller subsets first, followed by larger ones
towards the end. Next, we evaluate Eq. (20) for the diagonal
and the upper triangular part of matrix S. By construction
of S, the diagonal elements are always equal to one Sii = 1,
since a hypothesis is always equal to or is a subset of itself
ωi ⊆ ωi. Furthermore, there are the following cases to
consider for the elements Sij with i < j in the upper right
triangular part based on the cardinalities of the hypotheses:
1. |ωi| < |ωj |: ωj has a greater cardinality than ωi and can’t

be equal to or subset of ωi. Evaluating Eq. (20) leads to
Sij = 0.

2. |ωi| = |ωj |: Since ωj and ωi have the same cardinality,
ωj can’t a true subset of ωi. Furthermore, ωi and ωj can’t
be equal since all hypotheses differ in at least one element.
This also leads to Sij = 0.

3. |ωi| > |ωj |: This case is impossible due to the sorting of
the hypotheses described in Eq. (22).

This means, that each element in the upper right triangle of S
is equal to zero: Sij = 0 ∀i < j. Therefore, S is a square
lower triangular matrix with unit diagonal, which is always
invertible.



Occupancy Loss MAE RMSE δ<1.25 δ<1.252 δ<1.253 δcls<1.25 δcls<1.252 δcls<1.253 mIoU
GT in m in m in % in % in % in % in % in % in %

Occ3D CE 2.33 4.31 58.8 89.6 94.3 50.4 74.3 76.4 43.1
Ours CE 2.30 5.92 86.0 91.9 94.7 75.4 78.0 78.7 46.7
Ours CEBBA 1.66 4.18 88.6 94.3 96.7 76.6 79.5 80.4 48.6

Table II. Ablation of loss function and occupancy GT. The model in the first row is trained with classical cross-entropy loss with the
occupancy data from Occ3D [31]. The second row shows the same model trained with the same loss function but with occupancy data from
our method. The last row shows the model trained with our proposed loss function (see Sec. 4.2) and occupancy data. Both the occupancy
data and the loss function have a significant impact on the model’s performance.

MAE RMSE δ<1.25 δ<1.252 δ<1.253 δcls<1.25 δcls<1.252 δcls<1.253 mIoU
in m in m in % in % in % in % in % in % in %

Occ3D 3.23 6.52 75.6 83.1 87.6 68.0 71.3 72.5 32.9
Ours 1.97 5.07 88.0 91.9 94.0 81.4 83.0 83.5 49.4

Table III. Evaluation on the Waymo dataset. We compare our semantic occupancy mapping method with Occ3D [31] on the Waymo
dataset with a voxel size of 40 cm. Our method yields superior occupancy grid maps and outperforms Occ3D in all metrics.
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Figure I. Belief mass distribution. The bar plot shows the distri-
bution of the belief masses mgt

mean(ω) in log-scale for the different
hypotheses averaged over the training set of nuScenes [2]. The
belief mass of all labeled classes is summed up since individual
classes are even less frequent. The belief mass for the uncertain
hypothesis Ω is significantly higher than for all other hypotheses.
This is due to the fact that the most voxels have never been mea-
sured and are therefore assigned to the uncertain hypothesis.

D. Distribution of Belief Masses

We visualize the belief mass distribution in Fig. I and observe
that it is very unbalanced. Therefore, we introduced the per
voxel weighting described in Eq. (13).

E. Impact of Direct BBA Supervision

To evaluate the impact of the direct BBA supervision (see
Sec. 4.2), we compare the performance of the model trained
with and without the direct BBA supervision. We follow the
same training procedure as described in Sec. 5.2 and evaluate
the model on the nuScenes dataset [2]. We report results in
Tab. II. Both the occupancy data and the loss function have
a significant impact on the model’s performance.

F. Evaluation on Waymo
We evaluate our method on the Waymo dataset [30] to
demonstrate the generalization capabilities of our seman-
tic occupancy mapping approach. We compare the semantic
occupancy maps generated by our method with those of
Occ3D [31] for a voxel size of 40 cm. Tab. III shows that our
method produces superior occupancy grid maps compared
to Occ3D.

G. Compute Resources
The spherical grid mapping and multi-frame aggregation
processing takes around a day to process all training and val-
idation scenes (850 total scenes) of the nuScenes dataset [2]
on eight Nvidia V100. The training of a single model
(48 epochs) roughly takes two days on two Nvidia A100
80GB. The computational overhead of predicting basic belief
masses instead of class probabilities is negligible compared
to the overall computational cost of the model, since only
the number of outputs in the last layer change slightly.

H. Limitations
Our method relies on the poses of the ego vehicle and given
3D bounding boxes for motion compensation and multi-
frame aggregation. Therefore, the quality of the generated
semantic occupancy maps is limited by the quality of the
ego poses and the 3D bounding boxes. Misaligned poses or
inaccurate bounding boxes may lead to artifacts in the gener-
ated semantic occupancy maps. Furthermore, 3D bounding
boxes may not represent the true shape of an object. Addi-
tionally, the voxel size is a limiting factor since the memory
requirements increase cubically with decreasing voxel sizes.
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