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A. Relations, Contrast, Coverings, Topology
Every reflexive binary relation (RBR) ≈ on a set X defines
a covering {g(x) = {y : x ≈ y}}x∈X, of X and vice versa
one can define reflexive binary relationships through cover-
ings of X.

Lemma 1. (a) A covering G = {g(x)}x∈X, s.t., x ∈
g(x),∀x ∈ X defines a unique RBR,

≈G= {(x, y) : y ∈ g(x)}x∈X ⊂ X×X; 17

(b) The RBR ≈G is symmetric if and only if y ∈ g(x) when-
ever x ∈ g(y); (c) The RBR ≈G is transitive if and only if
g(y) ⊂ g(x) for all (x, y) ∈≈G.

Proof of Lemma. Parts (a) and (b) are trivial. If ≈G is
transitive, then let x ≈G y. Since ≈G is transitive, every
z ∈ g(y), i.e., y ≈G z, satisfies x ≈G z, i.e., z ∈ g(x).This
proves the necessity in part (c). On the other hand, suppose
that g(y) ⊂ g(x) for all (x, y) ∈≈G, and so (x, y) ∈≈G

and (y, z) ∈≈G imply z ∈ g(z) ⊂ g(y) ⊂ g(x), which
proves the sufficiency in part (c).

Arguing by symmetry proves the following

Observation 6. A symmetric RBR is transitive if and only if
the canonical covering {g(x) = {y : y ≈ x}}x∈X satisfies
g(x) = g(y) whenever y ∈ g(x).

Every RBR on a space X defines a canonical topology
τ≈ on X:

Definition 10. Let ≈ be a RBR on a space X, and let
G = {g(x)}x∈X, s.t., x ∈ g(x),∀x ∈ X be the covering
generated by ≈, the topology generated by the sub-basis G
is called the canonical topology generated by the RBR ≈
and is denoted by τ≈. If the RBR is symmetric, the canoni-
cal topology is called tolerable topology.

Tolerable/Tolerance topologies and some applications
have been studied in [34, 59], and [57].

A.1. Example 2 Metric/Pseudometric
If the indiscriminability relation is transitive, then the per-
ceptual topology may be optimal or not. In the former case

dK(x, y) =

0, x
αδ

≈ y

1, x ̸
αδ

≈ y
(20)

17We will use the notation x ≈G y, whenever (x, y) ∈≈G.

is a metric generating the optimal perceptual topology, in
the later case dK is a non-separating pseudo-metric gener-
ating the perceptual topology.18

B. Features and Relations.

The attempts to understand the role of feature representa-
tions in the processes of discrimination and, in particular,
establishing identity are ongoing. Much remains unknown,
reduced to embracing items of faith, and is frequently and
thoroughly revised. See for example, [4, 55]. Philso

Definition 11. We will say that the feature representation
satisfies the Law of Indiscriminability if Φx = Φy implies

x
αδ

≈ y.

Example 6: Suppose that the indiscriminability relation
is transitive. Let Φ = X. The feature representation
Φx = d(x) for every x ∈ X, satisfies the Law of In-

discriminability. Indeed, the transitivity of
αδ

≈ implies that

d(x) = d(y) iff x
αδ

≈ y, and hence Φx = Φy iff x
αδ

≈ y.

Observation 7. If there exists a feature representation that

satisfies the Law of Indiscriminability and such that (x
αδ

≈
y) =⇒ (Φx = Φy) , then

αδ

≈ is transitive.

Proof of Observation 7.
Let x

αδ

≈ y
αδ

≈ z, then under the assumption that u
αδ

≈ v
implies Φu = Φv , we get Φx = Φy = Φz . The feature
representation satisfies the Law of Indiscriminability and so

from Φx = Φz we get x
αδ

≈ z.
For every discriminative feature representation, indis-

cernible inputs are indiscriminable, i.e., (Φx = Φy) =⇒
(x

αδ

≈ y). The feature representation in Example 6 is a
discriminative feature representation and satisfies the Law
of Indiscriminability. However, unless the corresponding
perceptual topology is optimal, the Leibniz Law of Identity
does not hold.

The Leibniz Law of Identity does hold in the following
example.
Example 7: Let X = (0,+∞). Suppose that Weber’s law
holds and let k > 0 be the Weber constant. Let w = 1 + k,
and let

d(x) = (x/w, xw) (21)

18dK(x, y) = d(x, y)(d(x)) where d is the continuity defined by Kop-
perman in [38].
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The covering {d(x)}x∈X defines a symmetric RBR on X.
Let Φ be the collection of all sub-intervals in X. For ev-
ery x ∈ X, let Φ+(x) ⊂ Φ be the collection of all semi-
closed intervals of the form [b, bw), x/w < b ≤ x and let
Φ−(x) ⊂ Φ be the collection of all semi-closed intervals
of the form (b/w, b], x ≤ b < xw. Then, the assignment
Φx = Φ−(x)

⋃
Φ+(x) defines a discriminative feature rep-

resentation on X where the
αδ

≈ relationship is generated by
the covering defined in Equation 21. Furthermore, the Leib-
niz Law of Identity holds and the feature representation sat-
isfies the Law of Indiscriminability.

While indiscernibility has been discussed extensively,
we believe that active discrimination of feature represen-
tations is equally important biologically and epistemologi-
cally.

Definition 12. We will say that x and y are actively in-
discernible, in a given context, if the subject is not able to
activate the relevant knowledge that the features attributed
to x and the features attributed to y are distinct. We will use

the notation Φx
αδ

≈ Φy to denote that x and y are actively
indiscernible.

Indiscernibility does imply active indiscernabality, i.e,

(Φx = Φy) =⇒ (Φx
αδ

≈ Φy). The former is a transi-
tive relation on X but the later is a reflexive and symmetric
relationship that may or may not be transitive. Many re-

searchers have studied cases in which (Φx
αδ

≈ Φy) =⇒
(x

αδ

≈ y), see for example [33, 56, 57]. Alternatively, it
is possible that there exist biologically plausible contexts

where (x
αδ

≈ y) =⇒ (Φx
αδ

≈ Φy).

B.1. Discriminative feature representations.
Discriminative feature representations are very useful to
model and study indiscrimination and categorization. How-
ever, the few explicit examples, including Example 6, Ex-
ample 7, and the maximal cliques proposed in [66], may
be too large to be biologically plausible. It is possible that
some of the apparent bloat is due to the inclusion of hypo-
thetical (non-attributable) and redundant features.

The existence of discriminative feature representations
is a specific instance of a general property of reflexive and
symmetric binary relations.

Definition 13. Let ≈ be a reflexive and symmetric binary
relation on a set X, and let Φ be a set (of features). A feature
representation {Φx ⊂ Φ}x∈X is called a ≈-discriminative
feature representation if

Φx

⋂
Φy ̸= ∅ ⇐⇒ x ≈ y. (22)

Theorem 1. 19 Every symmetric and reflexive binary rep-
resentation ≈ admits a ≈-discriminative feature represen-

19The theorem is attributed to Kalmar and Yakubovich, and is proven

tation. Specifically, there exists a set of features Φ and a
feature representation {Φx ⊂ Φ}x∈X satisfying Condition
(22).

Proof of Theorem 1.
Let Γ (X, E≈) be the simple graph whose vertexes
are the points in X and the set of edges is E≈ =
{{x, y}, x ≈ y}. Denote by Cl (Γ (X, E≈)) the nonempty
cliques in the graph Γ (X, E≈), and for every x ∈ X let
Cl (Γ (X, E≈))x = {κ ∈ Cl (Γ (X, E≈)) : x ∈ κ}. We
define the feature space Φ to be the nonempty subsets of
Cl (Γ (X, E≈)) and the feature representation to be

Φx = Cl (Γ (X, E≈))x ,∀x ∈ X.

For every pair x ≈ y, Φx ∩ Φy ̸= ∅ since the clique
{x, y} ∈ Cl (Γ (X, E≈))x ∩ Cl (Γ (X, E≈))y . Vice
versa, if Φx ∩ Φy ̸= ∅, then x, y belong to some clique

κ ∈ Cl (Γ (X, E≈)) and so x
αδ

≈ y.

Discriminative feature representations are just
αδ

≈-
discriminative feature representations.
Example 6 Continued: When indiscriminability is tran-
sitive, the feature representation {Φx = d(x)}x∈X is a dis-

criminative feature representation, the Doppelgängers y
αδ

≈
x of every x ∈ X are the discriminative features of x and

cl(y) = d(x),∀y ∈ d(x).

Example 6 and Example 7 show that building discrim-
inative feature representations might be too resource de-
manding, because, the size of the feature representations
Φx may be too large. On the other hand, even such large
feature representations may be starting points in the search
and identification of smaller representations through a re-
finement process outlined below. In particular, applying
this process to the discriminative feature representation in
Example 6, yields a new discriminative feature represen-
tation {Φ̂x = {d(x)}}x∈X. The new discriminative feature
representation appears simpler, the feature representation of
each input is a single feature. However, the new features are
much more complex than the original features.

Let Φ be a space of features, and let {Φx ⊂ Φ}x∈X

be a context dependent feature representation of the inputs
x ∈ X. The semantic cluster of inputs sharing a feature
ξ ∈ Φ is the context-dependent cluster of inputs:

cl(ξ) = {x : ξ ∈ Φx.} (23)

The feature ξ is hypothetical in a given context if its seman-
tic cluster is empty, cl(ξ) = ∅. The semantic clusters shared

for reflexive and symmetric binary relations on finite sets in [66]. Here we
provide simple proof of the general case, that does not rely on transfinite
induction



by the attributable features define a new feature space cl(Φ)
and a new feature representation. Specifically, for every
x ∈ X define cl(Φ)x = {cl(ξ) : ξ ∈ Φx} and the fea-
ture representation {cl(Φ)x ⊂ cl(Φ) = ∪

x∈X
cl(Φ)x}x∈X.

There is a bijective mapping between the new feature space
cl(Φ) and the quotient space Φ/≡ where the equivalence re-
lation ≡ is defined by ξ ≡ η ⇐⇒ cl(ξ) = cl(η). In a sense
the new feature space and representation are smaller (there
is an on-to mapping Φ → cl(Φ)). All features in cl(Φ) are
attributed and there are no redundant, semantically synony-
mous features. Furthermore,

cl(ξ) = cl(cl(ξ)), for every attributed feature ξ ∈ Φ.
(24)

Indeed, if ξ is attributed feature, then y ∈ cl(ξ) ⇐⇒ ξ ∈
Φy ⇐⇒ cl(ξ) ∈ cl(Φ)y ⇐⇒ y ∈ cl(cl(ξ)).

Let ≈ be a reflexive and symmetric binary relation on a
set X, and let {Φx ⊂ Φ}x∈X be a ≈- discriminative fea-
ture representation, i.e., the representation satisfies Con-
dition 22. The clusters of inputs sharing attributed features
have additional structure and define a new discriminative
feature representation.

Observation 8. Let ≈ be a reflexive and symmetric bi-
nary relation on a set X, and let {Φx ⊂ Φ}x∈X be a ≈-
discriminative feature representation, i.e., the representa-
tion satisfies Condition 22.

(i.) For every attributed feature ξ ∈ Φ, the cluster cl(ξ)
is a clique in Γ (X, E≈) and cl(ξ) ∈ Cl (Γ (X, E≈))x,
for every x ∈ cl(ξ).

(ii.) {cl(Φ)x}x∈X is a ≈-discriminative feature repre-
sentation.

Proof of Observation 8

(i.) Let y, z ∈ cl(ξ), and so ξ ∈ Φy ∩ Φz , but
{Φx ⊂ Φ}x∈X is a ≈-discriminative feature represen-
tation and so y ≈ z. Thus cl(ξ) ∈ Cl (Γ (X, E≈))x ⊂
Cl (Γ (X, E≈)), for all x ∈ cl(ξ).

(ii.) If x ≈ y, then there exists ξ ∈ Φx ∩ Φy and so
cl(ξ) ∈ cl(Φ)x∩cl(Φ)y , and clearly cl(Φ)x∩cl(Φ)y ̸=
∅.

On the other hand, every feature ξ ∈ Φ, such that
cl(ξ) ∈ cl(Φ)x ∩ cl(Φ)y ̸= ∅, belongs to Φx ∩ Φy ,
and so cl(Φ)x ∩ cl(Φ)y ̸= ∅ =⇒ Φx ∩ Φy ̸= ∅ =⇒
x ≈ y.

B.2. Finite Discriminative Feature Representations
Observation 9. Let ≈ be symmetric and reflexive bi-
nary relation on X, Φ a finite set of attributed features.

If there exists an ≈-discriminative feature representation
{Φx ⊂ Φ}x∈X, then for every fully populated classifier
R = {R1, . . . , Rm} with more labels than the total num-
ber of attributed features #Φ, m > #Φ, there exist x ≈ y
such that labelR (x) ̸= labelR (y).

Proof of Observation 9
Let Φ(j) be the collection of features attributed to inputs
whose labels equal j = 1, . . . ,m. Specifically,

Φ(j) = {ξ ∈ Φ : ξ ∈ Φx for some x ∈ Rj ⊂ X}.

Denote by #j the number of elements in Φ(j), i.e., #j =
#Φ(j). The classifier is fully populated and the feature rep-
resentation is ≈-discriminative feature representation and
so

#j ≥ 1, j = 1, . . . ,m. (25)

The sets of attributed features Φ(j) cannot be disjoint. In-
deed, Φ(i) ∩ Φ(j) = ∅, if i ̸= j together with Inequality
25would lead to the contradiction

m > #Φ =

m∑
j=1

#j ≥ m.

Thus there exits a feature ξ ∈ Φ(i) ∩ Φ(j) for some labels
i ̸= j. And hence there exist two inputs x ∈ Ri and y ∈ Rj ,
i.e., labelR (x) = i ̸= j = labelR (y), such that ξ ∈ Φx ∩
Φy . The feature representation is ≈-discriminative and so
x ≈ y.

C. Sorites, Ill-posed Classification
Sorites chains and the related paradoxes are deeply related
to indiscriminability. They have been studied and argued
since at least the 4th century BCE.20 Every pair of adversar-

ial Doppelgängers x
αδ

≈ y such that labelR (x) ̸= labelR (y)
is a sorites chain. On the other hand, every sorites chain

x1
αδ

≈ x2
αδ

≈ · · ·
αδ

≈ xn such that labelR (x1) ̸= labelR (xn)
for some classifier R must contain a pair of adversarial Dop-
pelgängers. Indeed,

Lemma 2. Let R be classifier with labeling function
labelR : X → {1, 2, . . . ,m}. If there exists a chain of

Doppelgängers x1
αδ

≈ x2
αδ

≈ · · ·
αδ

≈ xn whose initial and
final samples are assigned different labels labelR (x1) ̸=
labelR (xn) by R then there exists a pair of adversarial

Doppelgängers xi
αδ

≈ xi+1, labelR (xi) ̸= labelR (xi+1),
where i ∈ {1, . . . , n − 1}. In fact i can be chosen so
that labelR (x1) = labelR (xi) and/or labelR (xi+1) =
labelR (xn).

20At least since Eubulides of Miletus formulated the Heap Paradox.



Proof of Lemma. The short proof of the lemma is con-
structive. There are two types of constructions that might
be used to produce the adversarial Doppelgängers, the “first
encounter pair” and the “last encounter”. The last encounter
construction is based on identifying the last link in the chain
that has the same label as x1. Set

i = max{j ∈ {1, 2, . . . ,m} : labelR (x1) = labelR (xj)}.

Then labelR (xi) = labelR (x1) and labelR (xi) =

labelR (x1) ̸= labelR (xi+1). Thus xi
αδ

≈ xi+1 is a pair
of adversarial Doppelgängers. The first encounter construc-
tion is based on identifying the first link in the chain whose
label is different from labelR (x1). Indeed, let

i = min{j ∈ {1, 2, . . . ,m} : labelR (x1) ̸= labelR (xj)}.

Then labelR (xi−1) = labelR (x1) and labelR (xi−1) =

labelR (x1) ̸= labelR (xi). Thus xi−1
αδ

≈ xi, are a pair
of adversarial Doppelgängers. To complete the proof of the
lemma reverse the order of elements in the Doppelgänger
chain.

Lemma 3. Let X be the closed bounded interval [a, b] ⊂
(0,+∞). Suppose that Weber’s law holds and let k be the
Weber constant. Let w = 1 + k, and

d(x) =


[a, xw) , a ≤ x < aw

(x/w, xw) , aw ≤ x ≤ b/w

(x/w, b] , b/w < x ≤ b,

then X/∼σ is a singleton.

Proof of Lemma. Indeed, an argument by induction
shows that every two inputs x ∈ X and y ∈ X can

be “connected” by a finite chain of Doppelgängers x
αδ

≈
x1

αδ

≈ x2
αδ

≈ · · ·
αδ

≈ xm
αδ

≈ y. The induction will be on
jump(x; y) = min{l ∈ N : y < wlx} the number of (per-
ceptual) jumps one needs to get from x to y. Note that
by the definition of the sub-basis jump(x; y) = 1 implies

x
αδ

≈ y.
Let us assume that jump(x; z) ≤ n implies that x can

be connected to z by a finite chain of Doppelgängers, and
suppose that jump(x; y) = n+ 1.

If wnx < y < wn+1x, choose any x∗ such that y/w <
x∗ < wnx (see Figure 3).

Since jump(x;x∗) = n, the induction assumption im-

plies that there exists a finite chain of Doppelgängers x
αδ

≈
x1

αδ

≈ x2
αδ

≈ · · ·
αδ

≈ x∗. By construction x∗
αδ

≈ y, and
so we can add this final link to obtain the finite chain
x
αδ

≈ x1
αδ

≈ x2
αδ

≈ · · ·
αδ

≈ x∗
αδ

≈ y .

Figure 3. Linking x
αδ

≈ x1
αδ

≈ x2
αδ

≈ · · ·
αδ

≈ x∗ with x∗
αδ

≈ y to get

the chain of Doppelgängers x
αδ

≈ x1
αδ

≈ x2
αδ

≈ · · ·
αδ

≈ x∗
αδ

≈ y from
x to y.

Thus if R is any classifier defined on [a, b] such that
labelR (x) ̸= labelR (y) for some a ≤ x, y ≤ b, then
x ∼σ y and Lemma 2 implies that R admits adversarial
Doppelgängers and hence cannot be regular.

More generally, if the transitive closure ∼σ of
αδ

≈ is triv-
ial then every fully populated classifier with two or more
classes admits adversarial Doppelgängers. In particular,
let R be a fully populated classifier with labeling function
labelR : X ↠ {1, 2, . . . ,m}, then for every label c there

exist adversarial Doppelgängers x(c)
αδ

≈ x∗(c) ∈ X such
that c = labelR (x(c)) ̸= labelR (x∗(c)).

D. Weber’s Law and a Regular Classifier
Example 8: Let w > 1 and X be the closed bounded inter-
val [a, b′] ⊂ (0,+∞) and let a < b < b′/w and

d(x) =



[a, xw) , a ≤ x < aw

(x/w, xw) , aw ≤ x ≤ b/w

(x/w, b] , b/w < x ≤ b

(b, xw) , b < x ≤ bw

(x/w, b′] , bw < x ≤ b′.

(26)

There exists a unique regular fully populated classifier with
two labels. Every other fully populated classifier with two
or more labels must admit adversarial Doppelgängers.

E. Proof of Observation 4, Section 5.2.
Here we will prove that if inf

x∈X
µ(d(x)) > 0, then for every

classifier R = {R1, . . . , Rm} whose recall rates are suffi-
ciently high so that ρ > 1− 1/k̄(Ω). i.e.,(

1− ρ
)
k̄(Ω) < 1 (27)

Then every misclassified input x is an adversarial Dop-
pelgänger.
Proof of Observation 4. Let x be misclassified by R, that
is x ∈ Rj ∩Ωi(x), where j ∈ {1, . . . ,m} and j ̸= i(x) and
so

µ
(
Ωi(x)

)
− µ

(
Ωi(x) ∩Ri(x)

)
=
∑

s̸=i(x)

µ
(
Ωi(x) ∩Rs

)
.

(28)



The input x is misclassified by R, i.e., j = labelR (x) ̸=
i(x), and so

∑
s ̸=i(x) µ

(
Ωi(x) ∩Rs

)
≥ µ

(
Ωi(x) ∩Rj

)
.

Therefore, we get

µ
(
Ωi(x)

)
− µ

(
Ωi(x) ∩Ri(x)

)
≥ µ

(
Ωi(x) ∩Rj

)
(29)

and so

1− ρ ≥ 1−
µ
(
Ωi(x) ∩Ri(x)

)
µ
(
Ωi(x)

) ≥
µ
(
Ωi(x) ∩Rj

)
µ
(
Ωi(x)

)
The lower bound of the recall rates

(
1− ρ

)
k̄(Ω) < 1

and d(x) ⊂ Ωi(x) yield the estimate

1 >
(
1− ρ

)
k̄(Ω)

≥
µ
(
Ωi(x)

)
µ (d(x))

µ
(
Ωi(x) ∩Rj

)
µ
(
Ωi(x)

) (30)

≥ µ (d(x) ∩Rj)

µ (d(x))
.

Hence the set of adversarial Doppelgängers of x has posi-
tive measure, i.e., µ (d(x) \Rj) > 0.

F. Adversarial Training May or May Not Work
Example 9: Let X = R be the real line and let the proba-
bility measure µ be the Gaussian with mean 0 and variance
σ2 = 1/2 . Suppose that Weber’s law holds and let k > 0
be the Weber constant. Let w = 1 + k, and let

d(x) =


(wx, x/w) , x < 0

{0}, x = 0

(x/w, xw) , x > 0

(31)

Then X/∼σ= {(−∞, 0), {0}, (0,+∞)} and

µ(d(x)) =


|erf(wx)− erf(x/w)|

2
, x ̸= 0

0, x = 0
(32)

Consider the regular classifier Ω two classes Ω1 = (−∞, 0)
and Ω2 = [0,+∞). Let ϵ > 0 and let R(ε) be a two label
classifier such that

labelR(ε)(x) =

{
1, x < ϵ

2, x ≥ ϵ
(33)

Then the misclassified inputs are [0, ϵ), d(ϵ) is the collec-
tion of all adversarial Doppelgängers and the set of misclas-
sified adversarial Doppelgängers is (ϵ/w, ϵ).

Using the adversarial training [52], will move the deci-
sion boundary towards zero thus improving the accuracy of
the classifier (at best the new decision boundary moves to

Figure 4. X = R, d(x) defined in (31), Ω1 = (−∞, 0) and
Ω2 = [0,+∞), the classifier R(ε) defined in (33).

Figure 5. (a) The accuracies of the linear classifiers R(ε) de-
crease as ε increases. (b) The sizes of the sets of adversarial Dop-
pelgängers of the linear classifiers R(ε) have a unique maximal
value achieved at ε∗. The graph of the sizes of the sets of adver-
sarial Doppelgängers is shown in this panel. To improve the read-
ability the graph is scaled up to match the scales of the accuracy
graph.

x = ϵ/w). The good news is that the ”robustified” classi-
fiers will converge to the perfect accuracy classifier Ω. See
Figure 5(a)

However, the function µ((ε/w, ε)) has a unique global
maximum on [0,+∞) achieved at ε∗ > 0, see Figure 5(b) .
Thus if we apply robust training starting with a classifier s.t.
ε > ε∗ then we will improve accuracy but gain adversarial
Doppelgängers (seemingly, we will be trading off adversar-
ial Doppelgänger robustness to gain accuracy). However,
if ε < ε∗, robust training will improve both accuracy and
adversarial Doppelgänger robustness (i.e., there will be no
trade-off just gain across the front) as we move towards the
regular classifier.

Furthermore, the known methods to achieve certifi-
able robustness cannot prevent significant AD vulnerabil-
ity. This is due to the misalignment between the lp metric
topology and human perception (the perceptual topology).
In many cases the measure of the overlap of the phenom-
enal neighborhood d(x) of an input x and the metric ball
Br(x)(x) could have very small measure compared to the
measure of the phenomenal neighborhood (here r(x) is the
robustness radius at x). For example, this happens when the
input space is input spaces, specifically those that satisfy



Weber’s and Weber-Fechner’s laws.21

Thus robust training requires a way to locate and capture
Doppelgängers.

We are not aware of any state of the art adversarial train-
ing including “salience-based adversarial training”, which
does that.

Perceptual discrimination is often a pre-attentive pro-
cess, while the current salience-based training has been de-
veloped for higher level tasks that involve complex feature
salience driven attention. at present, it is not known whether
and when salience-based training can benefit the detection
of Doppelgängers.

F.1. Where are the Doppelgängers?
The perceptual distances can be used to stratify an input
space X into, at most countably many, disjoint spheres

Sw
ρ (x) = {y ∈ X, s.t. dw(x, y) = ρ ∈ [0, 1]} .

The open ball of radius one

B̊w
1 (x) = {y ∈ X, s.t. dw(x, y) < 1}

is just the equivalence class [x]∼σ with respect to the equiv-
alence relation ∼σ . Some of the strata may be empty
sets. For example, if ∼σ is trivial, then Sw

1 (x) = ∅
and X = [x]∼σ

= B̊w
1 (x) = Sw

0 (x)
⋃
Sw
1/2(x) for ev-

ery x ∈ X. On the other hand, if
αδ

≈ is transitive (
αδ

≈
equals ∼σ), then [x]∼σ = B̊w

1 (x) = Bw
1/2(x) and X =

Sw
0 (x)

⋃
Sw
1/2(x)

⋃
Sw
1 (x). The former case holds when-

ever the graph distance (d∞) between any two inputs is fi-
nite (three, six or whatever). An example of the later case is
provided in [6].

More interestingly the Doppelgängers of a point are pre-
cisely the nearest points to x if the distance is measured by
dw or d∞.

G. Perceptually Harmonic Functions.
The labeling functions of regular classifiers are step func-
tions and belong to the class of perceptually regular func-
tions, i.e., functions that respect the regularity on the space
of inputs imposed by the humans’ inability to discriminate
different ”raw” signals.

Definition 14. A function f : X → R is called percep-
tually regular if f = const on every equivalence class

ζ ∈ X/∼σ .22 Let L1
pr(X, µ,

αδ

≈) denote the vector space
of perceptually regular integrable functions.

21See Example 1 in the paper and the related examples in the Supple-
mentary material, including the example discussed in Lemma 3, Example
8, Example 9, and Example 11.

22Thus f is perceptually regular if and only if f : (X,
αδ

≈) → (R,=) is
a morphism of tolerance spaces, [69], mapping the (perceptual) tolerance

space (X,
αδ

≈) into the optimal tolerance space (R,=).

Figure 6. From the view point of an input/stimulus x ∈ X, the
space X is stratified into concentric spheres, the nearest neighbors
of x are precisely its Doppelgängers some or all of which may be
adversarial.

Assuming that the degree of a vertex x in the graph
Γ (X, Eαδ) defined by

dαδ(x) = µ(d(x)) (34)

is integrable and inf
x∈X

(dαδ(x)) > 0, then we define the dis-
crimination Laplace operator c.f. [7]:

△αδ(f)(x) = f(x)− 1√
dαδ(x)

∫
d(x)

f√
dαδ

(35)

The kernel of △αδ is nontrivial since △αδ(
√
dαδ) = 0 and

so 0 is an eigenvalue of △αδ . On the other hand, globally
constant functions f(x) ≡ c ∈ R \ {0} are harmonic if and
only if

1√
dαδ(x)

∫
d(x)

1√
dαδ

= 1,∀x ∈ X. (36)

It is easy to show that (36) fails in Example 1 and Example
8, where the probability measure µ is the uniform measure
and so all nontrivial globally constant functions are not △αδ

harmonic.
Example 10: If

αδ

≈ is transitive (as in [6] for example)
and hence the graph Γ (X, Eαδ) is regular, then ker△αδ =

L1
pr(X, µ,

αδ

≈) and the spectrum of the Laplace operator is
the set {0, 1}.

The operator △αδ has at least three aspects that make
it hard to use. First, it may not be well defined in many
cases. Second, piecewise constant functions are not neces-
sarily △αδ-harmonic. Third, it is hard to describe the full
spectrum of △αδ for most perceptual topologies τδ. We will
define another operator that exists in many situations when
△αδ is not well defined. Furthermore, all perceptually reg-
ular functions are harmonic with respect to it. Finally, its



spectrum is easy to compute. Assuming that the function
dσ : X → [0,+∞) defined by

dσ(x) = µ([x]∼σ ) (37)

is positive, then we define the Doppelgängers chain
Laplace operator by:

△σ(f)(x) = f(x)− 1

dσ(x)

∫
[x]∼σ

f (38)

Note that △σ is defined whenever △αδ is defined and some-
times △αδ = △σ .23 The spectrum of △σ is the set {0, 1},

ker△σ = L1
pr(X, µ,

αδ

≈) (39)

and

ker(△σ − Id) =

{
f :

∫
[x]∼σ

f = 0,∀x ∈ X

}
̸= {0}.

(40)

H. Harmonic salience functions
By definition, a salience scalefΦ is perceptually regular iff
fΦ (Φx) = fΦ (Φy) whenever x ∼σ y, i.e., whenever the
corresponding salience function f : X → R is perceptually
regular and hence harmonic with respect to △σ (△σf = 0).

I. Class Invariants.
We will call a set D ⊂ X perceptually regular if [x]∼σ

⊂
D for every x ∈ D. The classes in Rc = {x : labelR (x) =
c} ⊂ X, where R is a perceptually regular classifier are
perceptually regular subsets. Thus from now on we will
use we will use the shorter name regular class instead of a
perceptually regular subset.

The structural entropy of the perceptually regular set
D is defined as:

H∼σ (D) = − 1

µ(D)

∫
y∈D

log

(
µ([y]∼σ )

µ(D)

)
and (41)

the index of coincidence is

IC∼σ (D) =
1

µ(D)2

∫
y∈D

µ([y]∼σ ). (42)

The total/cumulative importance (salience) of the inputs in
a regular class D ⊂ X and the expected affinity/similarity
between pairs of inputs in D can be defined and exploited
if we have access to a well behaved (integrable) importance

23If
αδ

≈ is transitive, then d(x) = [x]∼σ , ∀x ∈ X, and so △αδ = △σ .

scale fΦ : Υ(Φ) → [0,+∞) and similarity scale s : X ×
X → R, we define the importance of D, IΦ(D), by

IΦ(D) =

∫
D

fΦ(Φy),

and the the expected affinity of D by

RΦ(D) =
1

µ(D)

∫
D

∫
D

s(x, y) =
1

µ(D)

∫
D

P (x,D).

The expected affinity defined above involves an iterated in-
tegral and is essentially the resemblance attribute defined in
[79].

J. Analyzing Doppelgänger Vulnerability.

Example 11: Let µ(A) = 2
√
π

π

∫
A

e−t2 dt be the proba-

bility measure on X = (0,+∞) and let the indiscrim-
inability relation on X be defined by the covering Dαδ =
{d(x) = (x/w, xw)}x∈X, where w > 1 is a fixed constant.
Let ϵ > 0 and let R(ϵ) be the linear classifier defined by

labelR(ε)(x) =

{
1, 0 < x < ϵ

2, x ≥ ϵ.
(43)

The conceptual entropy of HR(ϵ)(x) is positive if and only
if x ∈ (ϵ/w,wϵ). In particular, the points outside the region
of conceptual ambiguity X \ [ϵ/w,wϵ] are not vulnerable
to adversarial Doppelgängers attacks. The conceptual en-
tropy achieves its global maximum HR(ϵ)(x∗) = 1/2 at a
x∗ = x∗(ϵ, w). It is equal to zero on (0, ϵ/w] ∪ [ϵw,+∞),
and increases monotonically on [ϵ/w, x∗], and then de-
creases monotonically on [x∗, ϵw]. The vulnerability to an
adversarial Doppelgänger attack is maximized at the point
x∗. The measure of the region of ambiguity Α(R(ϵ)) is
µ(Α(R(ϵ)) = erf(wϵ) − erf(ϵ/w) < 1. The R(ϵ)-fooling
rate FR(ϵ)(â) ≤ erf(wϵ) − erf(ϵ/w) < 1 of an adversarial
Doppelgänger attack â is safely bounded away from 1.

K. ANN Discrimination
The indiscriminability of inputs by VGG-19, ResNet, and
Inception-V3 has been studied by Feather et al., [18]. Two
inputs x and y are indiscriminable by these ANN models,
x

ANN
≈ y, iff they “produce the same activations in a model

layer”. The relation
ANN
≈ is transitive. Indeed, let x and y pro-

duce the same activations at some level, then they produce
the same activations in all subsequent levels. Thus if x

ANN
≈ y

and y
ANN
≈ z, then x and z produce the same activations at all

sufficiently high levels, and therefore, x
ANN
≈ z. The same ar-

gument does imply that
ANN
≈ is transitive for all free-forward

models and for all recurrent neural network models.


