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A. Detailed analyses and discussions
A.1. Detailed ablation studies
Owing to space limitations in the main text, we conducted
an ablation study focusing only on the selected key com-
ponents. In this appendix, we present the detailed ablation
studies to further assess the effectiveness of the proposed
method from multiple perspectives. Specifically, we ex-
amine the effects of each appearance-preserving loss (Ap-
pendix A.1.1), keyframe selection (Appendix A.1.2), and
background loss (Appendix A.1.3).

A.1.1. Effect of each appearance-preserving loss
As explained in Section 3.3 regarding appearance-
preserving constraints, we adopt two appearance-preserving
losses (APL): the pixel-preserving loss Lpixel0 (Equation 9)
and the depth-preserving loss Ldepth0 (Equation 10). These
losses help prevent the degradation of the external structure,

Lpixel0 Ldepth0 0 ( 1
2
)3 ( 2

3
)3 ( 3

4
)3 Avg.

0.106 0.423 0.898 1.326 0.688
✓ 0.105 0.142 0.334 0.342 0.231

✓ 0.079 0.313 0.314 0.287 0.248
✓ ✓ 0.081 0.122 0.195 0.262 0.165

Table 7. Results of the detailed ablation study of appearance-
preserving losses when the cavity size sc is varied. The score
indicates CD (×103↓). A checkmark ✓ indicates that the cor-
responding loss was used.

Lpixel0 Ldepth0 left right up down Avg.

0.845 0.783 0.805 0.583 0.754
✓ 0.295 0.451 0.325 0.311 0.345

✓ 0.362 0.299 0.348 0.389 0.349

✓ ✓ 0.303 0.258 0.274 0.291 0.281

Table 8. Results of the detailed ablation study of appearance-
preserving losses when the cavity location lc is varied. The score
indicates CD (×103↓). A checkmark ✓ indicates that the corre-
sponding loss was used.

which is effectively learned from the first frame of the video
sequence, during the fitting process across the entire video
sequence. In the ablation study presented in Sections 4.2
and 4.3, we ablated both losses simultaneously to examine
the overall effect of APL. In a more detailed ablation study,
we assessed the performance when each of the appearance-
preserving losses was individually ablated.

Results. Table 7 summarizes the results when the cavity
size sc is varied, and Table 8 summarizes the results when
the cavity location lc is varied. Our findings are threefold.

(1) No APL vs. either of Lpixel0 and Ldepth0 . Both SfC-NeRF
with only Lpixel0 and SFC-NeRF with only Ldepth0 outper-
formed SfC-NeRF without APL in all cases. These results
indicate that both Lpixel0 and Ldepth0 effectively enhance the
performance of SfC.

(2) Full APL vs. either of Lpixel0 and Ldepth0 . SfC-NeRF
with both Lpixel0 and Ldepth0 outperformed SfC-NeRF with
only Lpixel0 and SFC-NeRF with only Ldepth0 in most cases.
These results indicate that Lpixel0 and Ldepth0 contribute to
improving the performance of SfC from different perspec-
tives, and they are most effective when used together.

(3) Lpixel0 vs Ldepth0 . The superiority or inferiority of each
loss depends on the cavity setting. This is related to the
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Figure 5. Comparison of appearances for objects having different
internal structures when t is varied within {t0, t6, t9}.

learnability of the 3D appearance, and further detailed anal-
yses will be an interesting direction for future research.

A.1.2. Effect of keyframe selection
As discussed in Section 3.3 regarding the keyframe con-
straints, we employ a keyframe pixel loss Lpixelk (Equa-
tion 11) to effectively capture shape changes caused by in-
ternal structures. Specifically, we selected the frame imme-
diately after the collision as the keyframe (k = 6, where k
is the keyframe index) for the experiments described in the
main text. An important question is whether this choice of
k is optimal. To investigate this, we evaluated the change in
performance by varying the value of k, specifically within
{6, 9}. Figure 5 shows a comparison of the appearances of
objects with different internal structures in these keyframes.
For reference, we also provided scores for the model with-
out keyframe pixel loss (denoted as k = None).

Results. Table 9 summarizes the results when the cavity
size sc is varied, and Table 10 summarizes the results when
the cavity location lc is varied. Our findings are twofold.

(1) Lpixel6 vs. Lpixel9 . SfC-NeRF with Lpixel6 outperformed
that with Lpixel9 in most cases. As shown in Figure 5, im-
mediately after the collision (at t6 (2)), the difference in the
shapes of the objects is noticeable. However, as time pro-
gressed after the collision (at t9 (3)), the difference in the
shapes of the objects diminished, whereas the difference
in their positions became more pronounced. We consider
this to be the main reason why SfC-NeRF with Lpixel6 per-
formed better than that with Lpixel9 .

(2) Lpixel6 /Lpixel9 vs. None. We found that SfC-NeRF
with Lpixel6 or Lpixel9 outperformed SfC-NeRF without the

k 0 ( 1
2
)3 ( 2

3
)3 ( 3

4
)3 Avg.

None 0.082 0.127 0.211 0.325 0.186

6 0.081 0.122 0.195 0.262 0.165
9 0.082 0.120 0.208 0.290 0.175

Table 9. Analysis of the effect of keyframe selection when the
cavity size sc is varied. The score indicates CD (×103↓). When
k = None, the keyframe pixel loss Lpixelk was not used. In con-
trast, when k ∈ {6, 9}, Lpixelk was used.

k left right up down Avg.

None 0.308 0.296 0.307 0.313 0.306

6 0.303 0.258 0.274 0.291 0.281
9 0.296 0.296 0.313 0.303 0.302

Table 10. Analysis of the effect of keyframe selection when the
cavity location lc is varied. The score indicates CD (×103↓).
When k = None, the keyframe pixel loss Lpixelk was not used.
In contrast, when k ∈ {6, 9}, Lpixelk was used.

keyframe pixel loss in most cases. These results indicate
that strategically weighing frames is more effective than
treating all frames equally.

A.1.3. Effect of background loss
As mentioned in the explanation of preprocessing in Sec-
tion 4.1, we use a background loss Lbg by leveraging the fact
that the background segmentation has been obtained. For
example, when the background is excluded using a white
color, this background loss helps distinguish whether the
white area belongs to the background or a foreground ob-
ject. This approach is not unrealistic because we use back-
ground segmentation that is not manually created but in-
stead predicted from a given image using a DNN-based im-
age matting model [6]. However, it is important and in-
teresting to investigate the effectiveness of the background
loss. To this end, we investigated the performance of SfC-
NeRF−bg, where the background loss (Lbg) was ablated. In
this setting, the performance of a model trained using only
the first frame of the video sequence (Step (i) in Figure 2(a))
also changes because the background loss is also ablated in
this step. We referred to this model as Static−bg. We com-
pared the scores of these models with those of the original
models (i.e., SfC-NeRF and Static).

Results. Table 11 summarizes the results when cavity size
sc is varied, and Table 12 summarizes the results when cav-
ity location lc is varied. Our findings are twofold.

(1) SfC-NeRF vs. SfC-NeRF−bg. SfC-NeRF outperformed
SfC-NeRF−bg in most cases. As mentioned above, the
background loss is useful for distinguishing background
and foreground objects, allowing for more accurate capture
of external structures. The movement of an object is af-
fected by both its external and internal structures. There-
fore, if the external structure can be estimated more accu-
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0 ( 1
2
)3 ( 2

3
)3 ( 3

4
)3 Avg.

Static 0.093 0.294 0.920 1.574 0.720
SfC-NeRF 0.081 0.122 0.195 0.262 0.165

Static−bg 0.093 0.290 0.906 1.545 0.708
SfC-NeRF−bg 0.101 0.149 0.222 0.279 0.188

Table 11. Results of the ablation study of background loss when
the cavity size sc is varied. The score indicates CD (×103↓).

left right up down Avg.

Static 0.841 0.842 0.815 0.813 0.828
SfC-NeRF 0.303 0.258 0.274 0.291 0.281

Static−bg 0.831 0.830 0.799 0.800 0.815
SfC-NeRF−bg 0.324 0.210 0.361 0.277 0.293

Table 12. Results of the ablation study of background loss when
the cavity location lc is varied. The score indicates CD (×103↓).

rately, the internal structure can also be estimated more ac-
curately.
(2) SfC-NeRF−bg vs Static−bg. SfC-NeRF−bg outperformed
Static −bg except when dealing with filled objects (sc = 0 in
Table 11).5 These results indicate that the proposed method
is effective in improving the performance of SfC even with-
out the use of advanced techniques such as background loss.

A.2. Extended experiments
A.2.1. Experiment IV: Influence of collision angle
In the above experiments, the collision angle was fixed, as
shown in Figures 6–13, regardless of the internal structure
and physical properties, to focus on comparisons related to
the internal structures and physical properties. For com-
pleteness, we investigated the influence of collision angle θc
on the performance of SfC. Specifically, we selected objects
with default settings (sc = ( 23 )

3, lc = center, and elastic
material defined by Ê = 1.0× 106 and ν̂ = 0.3) as the ob-
jects of investigation and examined their performance when
only the collision angles were altered. The objects were ro-
tated in the depth direction, as shown in Figure 14. The col-
lision angle θc was chosen from {0°, 22.5°, 45°, 67.5°, 90°}.
We compared the performance of Static and SfC-NeRF.
Results. Table 13 summarizes the quantitative results. Fig-
ure 14 presents the qualitative results. Our findings are
twofold.
(1) SfC-NeRF vs. Static. SfC-NeRF outperformed the Static
in all cases. These results indicate that optimizing the inter-

5When dealing with a filled object, inaccurate estimation of external
structure is problematic because it leads to a discrepancy between the ac-
tual mass and the estimated mass. In this situation, if the estimated mass is
encouraged to approach the ground truth mass through mass loss while
maintaining the external appearance with appearance-preserving losses,
the internal structure may be altered unnecessarily. As a result, SfC-
NeRF−bg degrades the performance of SfC when handling filled objects.
An accurate estimation of the external structure, aided by background loss,
effectively addresses this issue.

Sphere 0° 22.5° 45° 67.5° 90°

Static 1.164 1.163 1.163 1.162 1.160

SfC-NeRF 0.067 0.068 0.066 0.067 0.066

Cube 0° 22.5° 45° 67.5° 90°

Static 0.775 0.776 0.848 0.768 0.776

SfC-NeRF 0.201 0.173 0.627 0.201 0.201

Bicone 0° 22.5° 45° 67.5° 90°

Static 0.933 0.925 0.918 0.921 0.926

SfC-NeRF 0.144 0.194 0.187 0.146 0.154

Cylinder 0° 22.5° 45° 67.5° 90°

Static 0.891 0.905 0.915 0.905 0.964

SfC-NeRF 0.342 0.288 0.311 0.209 0.639

Diamond 0° 22.5° 45° 67.5° 90°

Static 0.837 0.830 0.833 0.819 0.838

SfC-NeRF 0.220 0.300 0.222 0.163 0.209

Table 13. Comparison of CD (×103↓) when collision angle θc is
varied.

nal structure through a video sequence using the proposed
method is beneficial, regardless of the collision angle.
(2) Effect of collision angle. We found that the collision an-
gle influenced the performance of SfC. The strength of this
effect depends on the object shape. There are three possi-
ble reasons for this performance variation: (i) Changes in
the estimation accuracy of external structures. The internal
structure was optimized under the constraint that the exter-
nal structure, learned from the first frame, should be main-
tained. Therefore, when the accuracy of the external struc-
ture estimation changed, the accuracy of the internal struc-
ture estimation also changed. (ii) Difference in the amount
of deformation. The amount of deformation varied depend-
ing on the collision angle. This factor also affected the ease
of estimating the internal structure. (iii) Asymmetry. When
an object was not symmetrical relative to the collision an-
gle, its behavior after the collision became asymmetrical.
Consequently, the ease of estimating the internal structure
also becomes asymmetric.

A.3. Evaluation from multiple perspectives
A.3.1. Evaluation through video sequences
In the main experiments, we evaluated the models using
the chamfer distance between the ground-truth particles
P̂P (t0) and the estimated particles PP (t0) in the first frame
of the video sequence, i.e., at t = t0. For the multidi-
mensional analysis, we investigated the chamfer distance
between the ground-truth particles P̂P (t) and the estimated
particles PP (t), averaged over the entire video sequence,
i.e., t ∈ {t0, . . . , tN−1}. For clarity, we refer to the former
(chamfer distance for the first static frame) as CDstatic and
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0 ( 1
2
)3 ( 2

3
)3 ( 3

4
)3 Avg.

Static 0.093 0.104 0.294 0.309 0.920 1.057 1.574 1.964 0.720 0.859

GO 0.091 0.092 0.301 0.301 0.941 0.944 1.586 1.612 0.730 0.737
GOmass 0.081 0.083 0.319 0.325 1.244 1.266 2.291 2.367 0.984 1.010
LPO 0.092 0.091 0.284 0.282 0.841 0.833 1.406 1.380 0.656 0.646
LPOmass 0.087 0.087 0.284 0.283 0.876 0.868 1.477 1.451 0.681 0.672

SfC-NeRF−mass 0.089 0.090 0.226 0.225 0.550 0.544 1.148 1.112 0.503 0.493
SfC-NeRF−APL 0.106 0.108 0.423 0.421 0.898 0.886 1.326 1.307 0.688 0.680
SfC-NeRF−APT 0.085 0.101 0.261 0.279 0.332 0.337 0.661 0.680 0.335 0.349
SfC-NeRF−key 0.082 0.086 0.127 0.131 0.211 0.213 0.325 0.325 0.186 0.189
SfC-NeRF−VA 0.146 0.269 0.293 0.338 0.370 0.407 0.456 0.485 0.316 0.375

SfC-NeRF 0.081 0.085 0.122 0.126 0.195 0.196 0.262 0.258 0.165 0.166

Table 14. Comparison of CD (×103↓) when the cavity size sc is varied. This is an extended table of Table 1. For each condition, the left
score indicates CDstatic, the chamfer distance between P(t0) and P̂(t0) at the first frame, i.e., t = t0, and the right score indicates CDvideo,
the chamfer distance between P(t) and P̂(t) averaged over the entire video sequence, i.e., t ∈ {t0, . . . , tN−1}.

left right up down Avg.

Static 0.841 1.159 0.842 1.306 0.815 1.731 0.813 1.241 0.828 1.359
(0.841) (1.294) (0.843) (1.154) (0.814) (1.246) (0.813) (1.727) (0.828) (1.355)

GO 0.874 0.879 0.853 0.870 0.878 0.875 0.870 1.035 0.869 0.915
(0.872) (2.606) (0.856) (2.549) (0.881) (1.471) (0.870) (1.673) (0.870) (2.075)

GOmass
1.349 1.386 1.334 1.375 1.104 1.141 1.001 1.370 1.197 1.318

(1.340) (3.134) (1.344) (3.126) (1.127) (1.866) (1.004) (1.805) (1.204) (2.483)

LPO 0.791 0.789 0.787 0.787 0.796 0.776 0.743 0.721 0.779 0.768
(0.802) (2.493) (0.800) (2.507) (0.819) (1.468) (0.737) (1.471) (0.790) (1.985)

LPOmass
0.824 0.822 0.817 0.818 0.828 0.806 0.775 0.753 0.811 0.800

(0.833) (2.529) (0.832) (2.556) (0.847) (1.497) (0.771) (1.538) (0.821) (2.030)

SfC-NeRF−mass
0.513 0.520 0.485 0.491 0.705 0.689 0.479 0.457 0.545 0.539

(0.858) (2.502) (0.878) (2.661) (0.747) (1.506) (0.956) (1.762) (0.860) (2.108)

SfC-NeRF−APL
0.845 0.840 0.783 0.788 0.805 0.786 0.583 0.580 0.754 0.749

(1.069) (2.885) (1.083) (2.943) (0.934) (1.764) (0.883) (1.750) (0.992) (2.335)

SfC-NeRF−APT
0.624 0.631 0.428 0.604 0.384 0.461 0.464 0.514 0.475 0.553

(0.588) (1.920) (0.586) (1.486) (0.579) (1.196) (0.646) (1.305) (0.600) (1.477)

SfC-NeRF−key
0.308 0.307 0.296 0.326 0.307 0.306 0.313 0.343 0.306 0.321

(0.372) (1.854) (0.396) (1.746) (0.387) (1.291) (0.389) (1.105) (0.386) (1.499)

SfC-NeRF−VA
0.542 0.611 0.596 0.767 0.333 0.389 0.385 0.421 0.464 0.547

(0.639) (2.304) (0.757) (2.265) (0.445) (1.338) (0.549) (1.339) (0.597) (1.811)

SfC-NeRF 0.303 0.308 0.258 0.313 0.274 0.273 0.291 0.307 0.281 0.300
(0.367) (1.821) (0.431) (1.647) (0.448) (1.262) (0.417) (1.204) (0.416) (1.483)

Table 15. Comparison of CD and ACD (×103↓) when the cavity location lc is varied. This is an extended table of Table 2. For each
condition, the left score indicates CDstatic, the chamfer distance between P(t0) and P̂(t0) at the first frame, i.e., t = t0, and the right score
indicates CDvideo, the chamfer distance between P(t) and P̂(t) averaged over the entire video sequence, i.e., t ∈ {t0, . . . , tN−1}. The gray
score in parenthesis indicates the ACD. For each condition, the left score indicates ACDstatic, the anti-chamfer distance at the first frame,
and the right score indicates ACDvideo, the anti-chamfer distance averaged over the entire video sequence. It is expected that each original
CD is smaller than the corresponding ACD.

the latter (chamfer distance for the entire video sequence)
as CDvideo. In the evaluation of the influence of cavity lo-
cation (Section 4.3), we introduce anti-chamfer distance,
which is the chamfer distance between the predicted par-
ticles PP (t0) and the ground truth particles P̃P (t0), where
the cavity is placed on the opposite side, in the first frame
of the video sequence to evaluate how well the cavity lo-
cation is captured. For further analysis, we calculated and
averaged similar scores for the entire video sequence. For
clarity, we refer to the former (anti-chamfer distance for the

first static frame) as ACDstatic and the latter (anti-chamfer
distance for the entire video sequence) as ACDvideo.

Results. Table 14 summarizes the results when the cavity
size sc is varied, and Table 15 summarizes the results when
the cavity location lc is varied. Our findings are fourfold.

(1) CDstatic vs. CDvideo. The relative values of CDstatic
and CDvideo vary across different cases. When calculat-
ing CDstatic in the first frame, the locations of the ground-
truth objects and those of the synthesized objects were
well aligned, allowing for a focus on differences in shapes.
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In contrast, when calculating CDvideo for the entire video
sequence, we need to consider not only the differences
in shapes but also the differences in absolute locations.
Misalignments accumulate over time because the locations
must vary within the allowance of the physical constraints
via DiffMPM [2]. Since the objective of this study was to
correctly predict the shape, rather than the location, CDstatic
is a more valid evaluation than CDvideo for this purpose.
(2) Comparison of CDstatic and CDvideo among models. Al-
though there is some variation in the superiority of the mod-
els depending on the metric used, the general trend remains
consistent: SfC-NeRF achieves the best score in most cases.
The two exceptions are CDvideo for sc = 0 in Table 14 and
CDvideo for lc = left in Table 15. However, the difference
from the best score is small (less than 0.002). These re-
sults validate the effectiveness of the proposed method com-
pared with the baseline and ablated models, according to
both metrics.
(3) ACDstatic vs. ACDvideo. Comparing ACDstatic with
ACDvideo, ACDstatic is smaller than ACDvideo. This is be-
cause the difference in location gradually increased after
the collision when the cavity was located on the opposite
side. Since the objective of this study is to correctly predict
the shape, rather than the location, ACDstatic is a more valid
evaluation than ACDvideo for this purpose.
(4) Comparison of CDstatic and ACDstatic among models.
When comparing the models, the baselines (i.e., GO- and
LPO-based models) tended to obtain similar CDstatic and
ACDstatic values because they struggled to find the opti-
mization direction, as shown in Figures 6–10. In contrast,
the proposed models (i.e., SfC-NeRF-based models, includ-
ing the ablated models) tend to obtain CDstatic, which is
smaller than ACDstatic. These results indicate that the pro-
posed models effectively capture the positional bias of the
cavity. Notably, a larger ACDstatic does not indicate better
performance unless CDstatic is adequately small because it
is possible to increase ACDstatic while sacrificing CDstatic.

A.3.2. Evaluation per external shape
In Experiments I (Section 4.2) and II (Section 4.3), we re-
ported the scores averaged over external shapes (i.e., sphere,
cube, bicone, cylinder, and diamond objects). To eval-
uate from a different perspective, this appendix presents
the scores for each external shape, averaged over other
conditions, i.e., either sc ∈ {0, ( 12 )3, ( 23 )3, ( 34 )3} or lc ∈
{left, right, up, down}.
Results. Table 16 summarizes the results when the cav-
ity size sc is varied (related to the results in Table 1), and
Table 17 summarizes the results when the cavity location
lc is varied (related to the results in Table 2). We found
that although the scores were affected by the external shape,
the same trends observed previously regarding the superior-
ity or inferiority of the models were maintained. Specif-

Sphere Cube Bicone Cylinder Diamond

Static 0.897 0.612 0.724 0.697 0.671

GO 0.889 0.637 0.704 0.756 0.663
GOmass 0.934 1.345 0.760 1.218 0.663
LPO 0.774 0.564 0.639 0.678 0.622
LPOmass 0.796 0.605 0.656 0.726 0.622

SfC-NeRF−mass 0.561 0.500 0.455 0.447 0.553
SfC-NeRF−APL 0.303 1.082 0.579 0.885 0.591
SfC-NeRF−APT 0.178 0.375 0.286 0.502 0.331
SfC-NeRF−key 0.081 0.173 0.159 0.288 0.230
SfC-NeRF−VA 0.113 0.279 0.363 0.558 0.268

SfC-NeRF 0.067 0.163 0.138 0.264 0.193

Table 16. Comparison of CD (×103↓) when the cavity size sc is
varied. The scores were averaged over cavity sizes.

Sphere Cube Bicone Cylinder Diamond

Static 1.006 0.719 0.824 0.818 0.772

GO 0.991 0.809 0.847 0.898 0.799
GOmass 1.065 1.528 0.934 1.332 1.125
LPO 0.954 0.673 0.764 0.804 0.701
LPOmass 0.980 0.723 0.796 0.845 0.711

SfC-NeRF−mass 0.695 0.480 0.424 0.595 0.533
SfC-NeRF−APL 0.548 1.064 0.373 1.194 0.592
SfC-NeRF−APT 0.318 0.502 0.374 0.730 0.451
SfC-NeRF−key 0.189 0.371 0.235 0.448 0.286
SfC-NeRF−VA 0.240 0.418 0.790 0.534 0.338

SfC-NeRF 0.152 0.342 0.231 0.393 0.289
(0.417) (0.386) (0.365) (0.491) (0.420)

Table 17. Comparison of CD (×103↓) when the cavity location lc
is varied. The scores were averaged over cavity sizes. The gray
score in parenthesis indicates ACD (×103). It is expected that the
original CD is smaller than it.

ically, SfC-NeRF outperformed both the baseline and ab-
lated models in most cases.

A.4. Possible challenges with real data
As discussed in Section 5, since SfC is a novel task, this
study focused on evaluating its fundamental performance
using simulation data, leaving the validation with real data
as a challenge for future research. However, it is both fea-
sible and important to discuss the potential challenges asso-
ciated with real data, and we address these in this appendix.
Three potential challenges are outlined below:
(1) Difficulty in accurately estimating external structures.
While significant progress has been made in recent years
regarding the estimation of 3D external structures, it is not
yet possible to estimate them accurately for all objects in
all situations. Our method assumes that the external struc-
ture learned in the first frame of the video sequence is accu-
rate. Therefore, if this estimation fails, overall performance
is degraded. We believe that incorporating the concept of
a physics-informed model, particularly in challenging sce-
narios (e.g., sparse views), such as Lagrangian particle op-
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timization [3], could provide a solution to this issue.
(2) Gap between real physics and the physics used in sim-
ulation. Despite recent advancements in physical simula-
tion models, discrepancies between real-world physics and
the physics underlying the simulation still persist. We be-
lieve that refining the proposed method alongside physics-
informed models (e.g., those discussed in Section 2) could
help alleviate this problem.
(3) Difficulty in accurately estimating physical properties.
As mentioned in Section 3.1, we address SfC under the
assumption that the ground truth physical properties are
available in advance to mitigate the chicken-and-egg prob-
lem between the physical properties and internal structures.
This assumption is reasonable if the material can be iden-
tified; however, obtaining perfectly accurate values for the
physical properties in real-world scenarios is challenging.
While the issue of solving the chicken-and-egg problem re-
mains, an appearance-based physical property estimation
method has already been proposed (e.g., PAC-NeRF [5]).
Combining our approach with previous methods for simul-
taneous optimization of physical properties and internal
structure would be an exciting direction for future research.

B. Qualitative results
This appendix presents qualitative results. The correspond-
ing demonstration videos are available at https://www.
kecl.ntt.co.jp/people/kaneko.takuhiro/
projects/sfc/.

B.1. Qualitative results for Experiments I and II
We provide the qualitative results for Experiments I (Sec-
tion 4.2) and II (Section 4.3) in Figures 6–10.

B.2. Qualitative results for Experiment III
We provide the qualitative results for Experiments III (Sec-
tion 4.4) in Figures 11–13.

B.3. Qualitative results for Experiment IV
We provide the qualitative results for Experiments IV (Ap-
pendix A.2.1) in Figure 14.
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Figure 6. Comparison of learned internal structures for sphere objects. (a) and (b) Examples of training images. The images are zoomed
in for easy viewing. (a) Examples of training images before collision. As shown in this column, the appearances of the objects are the
same across all scenes (1)–(8). Consequently, it is difficult to distinguish the internal structures based solely on these appearances. (b)
Examples of training images after collision. To overcome the difficulty mentioned above, we address SfC, in which we aim to identify the
internal structures based on appearance changes before and after collision, as shown in (a) and (b). (c)–(n) Internal structures visualized
through cross-sectional views perpendicular to the ground. In (d)–(n), the score below each image indicates CD (×103↓). (c) Ground truth
internal structures. As shown in this column, although the external appearances are the same in (a), the internal structures are different.
(d) Internal structures learned from the first frames of the video sequences. The same internal structures (i.e., the filled objects) were
learned because the appearances were the same before the collision (a). (e)–(h) Internal structures learned using the baselines (GO- and
LPO-based models). These models struggled to find optimal learning directions. (i)–(m) Internal structures learned using the ablated
models. The ablated models are insufficient to prevent convergence to improper solutions. (n) Internal structures learned using SfC-NeRF
(full model). The full model overcomes the above drawbacks and achieves the best CD.

7



(h) LPOmass(g) LPO(e) GO (f) GOmass (j) SfC-NeRF
−APL

(a) Before

collision

(b) After

collision

(c) Ground

truth

(k) SfC-NeRF
−APT

(l) SfC-NeRF
−key

(d) Static (m) SfC-NeRF
−VA

(n) SfC-NeRF

(1
)
s
c
=
0

(2
)
s
c
=

1 2

3
(3

)
s
c
=

2 3

3
(4

)
s
c
=

3 4

3
(5

)
l c
=
le
ft

(6
)
l c
=
ri
g
h
t

(7
)
l c
=
u
p

(8
)
l c
=
b
o
tt
o
m

(i) SfC-NeRF
−mass

0.775

0.096

0.262

1.315

0.725

0.715

0.720

0.717

0.722 0.772

0.101 0.098

0.261 0.262

1.170 1.286

0.678 0.736

0.676 0.726

0.688 0.729

0.652 0.700

0.813 1.634

0.104 0.103

0.281 0.399

1.351 3.245

0.857 1.550

0.790 1.506

0.758 1.510

0.831 1.545

0.4250.2031.263 0.378 0.201

0.1180.0860.183 0.085 0.094

0.2320.1270.514 0.138 0.152

0.3390.2782.367 0.901 0.205

0.4170.5450.945 0.499 0.393

0.5280.3051.199 0.665 0.336

0.3250.3391.020 0.465 0.328

0.4020.2961.092 0.379 0.311

0.710

0.077

0.225

0.987

0.903

0.314

0.234

0.469

Figure 7. Comparison of learned internal structures for cube objects. The view of the figure is the same as that of Figure 6.
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Figure 8. Comparison of learned internal structures for bicone objects. The view of the figure is the same as that of Figure 6.
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Figure 9. Comparison of learned internal structures for cylinder objects. The view of the figure is the same as that of Figure 6.
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Figure 10. Comparison of learned internal structures for diamond objects. The view of the figure is the same as that of Figure 6.

11



(h) Ground

truth

(c) Ground

truth

(a) Before

collision

(b) After

collision

(d) Static (e) SfC-NeRF

1.164 0.067

1.163 0.095

1.162 0.101

1.163 0.317

1.161 0.309

0.933 0.144

0.933 0.247

0.933 0.265

0.932 0.226

0.932 0.209

(f) Before

collision

(g) After

collision

(i) Static (j) SfC-NeRF

Ê
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Ê
=

2
.5
×
1
0
5

(1
)

Ê
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Figure 11. Comparison of learned internal structures for sphere objects (left) and bicone objects (right) when Young’s modulus Ê is varied.
Young’s modulus is a measure of elasticity and quantifies tensile or compressive stiffness when force is applied. Here, we discuss the results
for the sphere objects because the same tendencies are observed for the bicone objects. As shown in (a) and (c), the external appearances
before collision (a) and the internal structures (c) are the same in all cases (1)–(5). However, as shown in (b), the shapes after collision
differ because of variations in Young’s modulus Ê ∈ {2.5× 105, 5.0× 105, 1.0× 106, 2.0× 106, 4.0× 106}. In particular, as Young’s
modulus increases from top to bottom, the object becomes stiffer, and the amount of shape change decreases. In the Static model (b), the
internal structure was learned from the first frame, which looks the same in all cases. As a result, the same internal structure was learned
across all variations. In contrast, in SfC-NeRF (e), the internal structure was learned using video sequences with different appearances.
In this example, the same internal structure is expected to be learned in all cases. However, the varying appearances after collision (b),
which provide a clue for solving the problem, lead to different outcomes. As shown in (1)(b) and (2)(b), when the object is soft, it deforms
significantly after collision. This makes it difficult to capture the internal structure consistently, as shown in (1)(e) and (2)(e). In contrast,
as shown in (4)(b) and (5)(b), when the object is stiffer, the shape change is limited. This narrows the range within which internal structures
can be estimated, as shown in (4)(e) and (5)(e). Since SfC is an ill-posed problem with multiple possible solutions, the obtained results are
considered reasonable. However, further improvement remains a topic for future work.
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Figure 12. Comparison of learned internal structures for sphere objects (left) and cube objects (right) when Poisson’s ratio ν̂ is var-
ied. Poisson’s ratio is a measure of Poisson effect and quantifies how much a material deforms in a direction perpendicular to the
direction in which force is applied. We varied Poisson’s ratio ν̂ within the range of values commonly observed in real materials, i.e.,
ν̂ ∈ {0.2, 0.25, 0.3, 0.35, 0.4}. As shown in (b)(g), this physical property does not significantly affect the appearance after the collision,
compared to the results when Young’s modulus is varied (Figure 11). As a result, the learned internal structures are almost identical, as
shown in (e)(j).
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Figure 13. Comparison of learned internal structures for sphere objects (left) and diamond objects (right) with varying materials. The
physical properties were based on the PAC-NeRF dataset [5]. Specifically: (1) Newtonian fluid with the “Droplet” setting (fluid viscosity
µ̂ = 200 and bulk modulus κ̂ = 105). (2) Newtonian fluid with the “Letter” setting (µ̂ = 100 and κ̂ = 105). (3) Non-Newtonian fluid
with the “Cream” setting (shear modulus µ̂ = 104, bulk modulus κ̂ = 106, yield stress τ̂Y = 3 × 103, and plasticity viscosity η̂ = 10).
(4) Non-Newtonian fluid with the “Toothpaste” setting (µ̂ = 5× 103, κ̂ = 105, τ̂Y = 200, and η̂ = 10). (5) Plasticine with the “Playdoh”
setting (Young’s modulus Ê = 2 × 106, Poisson’s ratio ν̂ = 0.3, and yield stress τ̂Y = 1.54 × 104). (6) Plasticine with the “Cat”
setting (Ê = 2 × 106, ν̂ = 0.3, and τ̂Y = 3.85 × 103). (7) Sand with the “Trophy” setting (θ̂fric = 40°). These results demonstrate
that SfC-NeRF (e)(j) improves structure estimation compared to Static (d)(i), regardless of the material. However, the improvement rate
depends on the material. As an initial approach to address SfC, we proposed a general-purpose method in this study. However, it would be
interesting to develop methods specifically tailored to individual materials in future work.
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Figure 14. Comparison of learned internal structures for bicone objects (left) and cylinder objects (right) when collision angle θc is varied.
We varied collision angle θc ∈ {0°, 22.5°, 45°, 67.5°, 90°}. We found that the effect of collision angle on the estimation of the internal
structure depends on the object shape. (a)–(e) In the case of an object, such as bicone, where the object is entirely visible regardless of the
collision angle, the estimation performance remains relatively stable across different collision angles. (f)–(j) In contrast, in the case of an
object, such as cylinder, where the visible area varies greatly depending on the collision angle, the estimation performance also changes
with the collision angle. For example, in (5)(g), the bottom of the object is not visible when it collides with the ground. As a result, a hole
is generated at the bottom of the object in (5)(j). This issue may be alleviated by improving camera placement. Other possible factors that
affect estimation performance are discussed in Appendix A.2.1.
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C. Implementation details
C.1. Dataset
Since SfC is a new task and no established dataset is avail-
able, we created a new dataset called the SfC dataset based
on the protocol of PAC-NeRF [5], which is a pioneering
study of geometry-agnostic system identification. In the
main experiments presented in Section 4, we prepared a
total of 115 objects by changing the external shape, inter-
nal structure, and material of the objects. Figure 3 shows
examples of data in this dataset. First, we prepared five
external shapes: sphere, cube, bicone, cylinder, and dia-
mond. Regarding the internal structure and material, we set
the default values as follows: the cavity size rate for the
filled object, sc, was set to ( 23 )

3, the cavity location, lc, was
set to the center, and the material was defined as an elastic
material with Young’s modulus Ê = 106 and Poisson’s ra-
tio ν̂ = 0.3. For this default properties, one of them was
changed as follows.

(a) Three different sized cavities: sc ∈ {0, ( 12 )3, ( 34 )3}.

(b) Four different locations of cavities: the center lc is
moved in {up, down, left, right}.

(c-1) Eight different elastic materials: those with four dif-
ferent Young’s moduli Ê ∈ {2.5 × 105, 5 × 105, 2 ×
106, 4× 106} and those with four different Poisson’s ratios
ν̂ ∈ {0.2, 0.25, 0.35, 0.4}.

(c-2) Seven different materials: two Newtonian fluids, two
non-Newtonian fluids, two plasticines, and one sand. The
physical properties of these materials were based on the
PAC-NeRF dataset [5]. Specifically, the two Newtonian
fluids include one with the “Droplet” setting (fluid viscos-
ity µ̂ = 200 and bulk modulus κ̂ = 105) and one with
the “Letter” setting (µ̂ = 100 and κ̂ = 105). The two
non-Newtonian fluids include one with the “Cream” setting
(shear modulus µ̂ = 104, bulk modulus κ̂ = 106, yield
stress τ̂Y = 3 × 103, and plasticity viscosity η̂ = 10) and
one with the “Toothpaste” setting (µ̂ = 5 × 103, κ̂ = 105,
τ̂Y = 200, and η̂ = 10). The two plasticines include one
with the “Playdoh” setting (Young’s modulus Ê = 2× 106,
Poisson’s ratio ν̂ = 0.3, and yield stress τ̂Y = 1.54 × 104)
and one with the “Cat” setting (Ê = 2× 106, ν̂ = 0.3, and
τ̂Y = 3.85 × 103). The sand is defined with the “Trophy”
setting (θ̂fric = 40°).

Thus, we created 5 external shapes × (1 default + 3 sizes
+ 4 locations + (8 + 7) materials) = 115 objects.

In this appendix, we also prepared 20 objects for
the extended experiments described in Appendix A.2.
Specifically, we consider four collision angles: θc ∈
{22.5°, 45°, 67.5°, 90°}. Thus, in this appendix, we created
5 external shapes × 4 collision angles = 20 objects. The
total number of objects created in the main text and this ap-
pendix is 115 + 20 = 135.

Following the PAC-NeRF study [5], the ground truth
data were generated using the MLS-MPM simulator [1],
where each object fell freely under the influence of gravity
and collided with the ground plane. The images were ren-
dered under various environmental lighting conditions and
ground textures using a photorealistic renderer. Each scene
was captured from 11 viewpoints using cameras spaced in
the upper hemisphere including an object.

C.2. Model
We implemented the models based on the official PAC-
NeRF code [5].6 PAC-NeRF represents an Eulerian grid-
based scene representation using voxel-based NeRF (specif-
ically, direct voxel grid optimization (DVGO) [7]) and con-
ducts a Lagrangian particle-based differentiable physical
simulation using a differentiable MPM simulator (specifi-
cally, DiffTaichi [2]). More specifically, DVGO represents
a volume density field σG′

using a 3D dense voxel grid
and represents a color field cG

′
using the combination of

a 4D dense voxel grid and a 2-layer multi-layer perceptron
(MLP) with a hidden dimension of 128. When this MLP
is used, positional embedding in the viewing direction d is
used as an additional input. We set the resolutions of σG′

and cG
′

to match those in PAC-NeRF [5].

C.3. Training settings
We performed static optimization (Figure 2(i)) using the
same settings as those used for PAC-NeRF. Specifically, we
trained the model for 6000 iterations using the Adam opti-
mizer [4] with learning rates of 0.1 for the volume density
grid and color grid, and a learning rate of 0.001 for the MLP.
The momentum terms β1 and β2 were set to 0.9 and 0.999,
respectively. In the dynamic optimization (Figure 2(ii)), we
trained the model for 1000 iterations using the Adam opti-
mizer [4] with a default learning rate of 6.4 for the volume
density grid. The momentum terms β1 and β2 were set to
0.9 and 0.999, respectively. We found that a large learn-
ing rate is useful for efficiently reducing the volume den-
sity; however, it is not necessary when the estimated mass
m sufficiently approaches the ground truth mass m̂. There-
fore, we divided the learning rate by 2 (with a minimum of
0.1) as long as the estimated mass m was below the ground
truth mass m̂. Conversely, we multiplied the learning rate
by 2 (with a maximum of 6.4) as long as the estimated mass
m exceeded the ground truth mass m̂.

We conducted volume annealing every 100 iteration dur-
ing the dynamic optimization. When the estimated mass m
is significantly larger than the ground truth mass m̂ (specif-
ically, when the difference exceeds 10 in practice), the ex-
pansion process is skipped to prevent the estimated mass m
from deviating further from the ground truth mass m̂.

6https://github.com/xuan-li/PAC-NeRF
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In appearance-preserving training, static optimization
was performed using settings similar to those mentioned
above (i.e., static optimization in Step (i) (Figure 2(i))), but
the number of iterations was reduced to 10.

We empirically set the hyperparameters for the total loss
Lfull (Equation 12) as λmass = 1, λpres = 100, wdepth = 0.01,
and λkey = 10. The hyperparameter for the background loss
Lbg was set to wbg = 0.2.

C.4. Evaluation metrics
As mentioned in Section 3.1, we use particles PP (t0) to
represent the structure (including the internal structure) of
an object and estimate PP (t0) to match the ground truth
P̂P (t0). Therefore, we evaluated the model by measuring
the distance between PP (t0) and P̂P (t0) using the chamfer
distance (CD). The smaller the value, the higher the degree
of matching. As mentioned in Section 4.3, we also used the
anti-chamfer distance (ACD), which is the chamfer distance
between the predicted particles PP (t0) and the ground truth
particles P̃P (t0), where the cavity was placed on the oppo-
site side, to evaluate the capture of the cavity location.
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