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1. Hyper-parameter Configuration
1.1. Baseline Method

We provide hyper-parameters for each dataset used in this
paper. We describe our hyper-parameter settings for both
from-scratch training and fine-tuning methods. We train
ResNet-18 from scratch while employing a fine-tuning
method for ViT. We use ViT-B/16, which is pre-trained on
the ImageNet-21K dataset. Tabs. 1 and 2 show the key
hyper-parameters used in our experiments. We follow other
specific hyper-parameters by baseline methods’ for a fair
comparison with them. To provide more reliable experi-
mental results, we report the mean and variance of three
experimental results, each with different random seeds.

Table 1. Hyper-parameters for ResNet-18 backbone. We show
the key hyper-parameters used in this paper.

Hyper-parameter CIFAR-10 CIFAR-100 TinyImageNet DomainNet

Epochs 50 170 100 50
Batch size 32 128 32 128
Optimizer SGD SGD SGD SGD
Learning rate 0.03 - 0. 1 0.03 - 0.1 0.03 - 0.1 0.03 - 0.1
LR scheduler None Multi-step None None
Weight decay None None None None

Network ResNet-18

Table 2. Hyper-parameters for ViT-B/16 backbone. We de-
scribe the hyper-parameter settings for pre-trained networks.

Hyper-parameter CIFAR-100 ImageNet-R DomainNet

Epochs 20 50 20
Batch size 128 128 128
Optimizer SGD SGD SGD
Learning rate 0.01 0.01 0.01
Milestones 18 40 15
LR decay 0.1 0.1 0.1
Weight decay 5e-4 5e-4 5e-4

Network ViT-B/16

1.2. View-Batch Model

To ensure simplicity, we do not modify the baseline meth-
ods’ hyper-parameters when applying our method to them.
Therefore, our method does not require hyper-parameter
changes from baseline methods and does not need extra
training or inference costs compared to baseline methods.
For augmentation type, we employ the widely-used auto-

Method Latency RAMCPU RAMGPU: forward RAMGPU: backward

Baseline 29.5ms 1.431GB 0.210GB 0.235GB
+View-Batch-replay 27.5ms 1.422GB 0.210GB 0.235GB
+View-Batch-SSL 28.3ms 1.425GB 0.210GB 0.235GB

Table 3. Experimental results on computing cost. We use iCaRL
as the baseline method on the S-CIFAR-10 dataset.

Method Task RI=1 RI=2 RI=3 RI=4 RI=5

iCaRL
CIL 64.11 65.85 68.39 69.73 67.67
TIL 90.20 90.94 92.96 92.76 92.47
Avg 77.16 78.39 80.68 81.25 80.07

DER++
CIL 61.67 65.79 66.99 61.68 63.44
TIL 90.61 93.57 94.30 93.82 94.42
Avg 76.14 79.68 80.65 77.75 78.93

Table 4. Experimental results on recall interval. We show the
last top-1 accuracy varying the recall intervals (denoted as RI) on
S-CIFAR-10. We use the ResNet-18 backbone in this experiment.

augmentation [2] method. We do not change augmentation
types for different datasets or methods for strict compari-
son. This handcraft augmentation search will improve the
network’s performance, but we decided to stick to the same
augmentation method to validate the proposed method’s ef-
fect only without interference with augmentation.

2. Forgetting Curve Analysis Backgrounds
In Section 1 of the manuscript, we illustrate the forgetting
curve with different recall intervals. We draw these forget-
ting curves based on spacing effect theory [1, 3]. In spacing
effect theory, we estimate memory retention according to
elapsed time and recall interval. Specifically, in the forget-
ting curve theory [3], human’s memory retention R could
be defined as the function of the elapsed time t from the
initial learning experience as:

R(t) = A(bt+ 1)−S , (1)

where A is the first memory retention, b denotes time scal-
ing parameters, and S represents the memory retention de-
cay rate. Obviously, we assume a higher decay rate of mem-
ory retention indicates faster forgetting. Moreover, Cepeda
et al. [1] empirically proves that the decay rate depends on
recall interval I . Borrowing this empirical finding, the de-
cay rate is defined as

S = 1 + c(ln(I + 1)− d)2, (2)

where d and c are empirically determined parameters. From
Equation (2), we learn that the increasing recall interval im-
proves the decay rate until some point d, then deteriorates



Method 5 Step 10 Step 20 Step

Avg ∆ Last ∆ Avg ∆ Last ∆ Avg ∆ Last ∆

DER 76.77 - 68.06 - 75.72 - 64.32 - 74.96 - 61.80 -
+replay 77.63 +0.86 69.21 +1.25 76.53 +0.81 65.49 +1.17 75.55 +0.59 62.65 +0.85
+self-supervised 78.60 +1.83 70.60 +2.54 78.12 +2.40 67.04 +2.72 76.95 +1.99 64.29 +2.49

TCIL 77.33 - 69.48 - 76.33 - 65.66 - 74.32 - 62.54 -
+replay 78.42 +1.09 70.35 +0.87 77.02 +0.69 67.71 +2.05 75.07 +0.75 63.93 +1.39
+self-supervised 79.23 +1.90 71.23 +1.75 78.02 +1.69 68.14 +2.48 76.83 +2.51 67.16 +4.62

Table 5. Experimental results on factor analysis. We showcase Avg and Last top-1 accuracy (%) on the S-CIFAR-100 benchmark with
three different class incremental steps. ResNet-18 backbone is adopted for all networks. We follow the official implementation to reproduce
the results of DER and TCIL. We demonstrate that our two main components significantly improve performance.

it again. Wahlheim et al. [5] interpret this phenomenon as
optimal recall interval mitigates a high decay rate due to
adequate learning difficulty. Finally, based on the given
formula and theory, we illustrate different forgetting curves
with varying recall intervals.

The degree of forgetting estimates the amount of mem-
ory neural networks forgets during recall intervals. Namely,
if the degree of forgetting is high, the neural networks sig-
nificantly lose their memory before they relearn the same
samples. Not surprisingly, since excessive memory for-
getting yields poor long-term memory retention in human
learners [4], we employ our degree of forgetting as an em-
pirical reason for the downward accuracy phenomenon in
long-term recall interval in Figure 4 of the manuscript.

Specifically, we define the sequence of memory reten-
tion as r0, r1, ..., rE−1. Here, we denote E for the number
of total learning epochs and measure ri by evaluating neu-
ral networks on the current task at the end of each epoch
and adopting their top-1 accuracy (%) as a memory reten-
tion value. Since we aim to quantify the degree of forgetting
during recall interval, the variance of the memory retention
values is used as our metric, calculating the averaged mem-
ory retention differences between the mean and individual
retention values. Leveraging the average memory retention
difference, we define our degree of forgetting ∆r.

∆r =
1

E − E

E∑
i=E

((
1

E − E

E∑
j=E

rj)− ri)
2, (3)

where we include memory retention values from the satu-
rated epochs E due to high randomness in the early learning
phase. Consequently, we could evaluate the degree of for-
getting of neural networks based on Equation (3) in various
CL scenarios.

3. Additional Experimental Results
3.1. Results on Training Cost

Tab. 3 analyzes the resources overhead in terms of latency
(ms) and CPU and GPU RAM usage, which is measured

Method Degree of
forgetting

Avg top-1
accuracy (%)

Baseline 1.73 76.33
VBM-C 6.20 74.68
VBM-S 2.73 78.11

Table 6. Experimental results on View-Batch target. We show
the degree of forgetting and its average top-1 accuracy (%) on the
S-CIFAR-100 dataset varying the targets of view-batch model. For
the degree of forgetting, we represent prohibitive values with red
and mark optimal values with green color.

by averaging three runs. The proposed method increases
the minimal latency by 3% to compute the KL divergence
loss. Further, there is no additional resource usage for both
CPU and GPU RAM when using our method. Therefore,
we demonstrate that the proposed method can be utilized as
the drop-in replacement approach.

3.2. Results on Recall Interval

Tab. 4 validates the various recall intervals on the S-CIFAR-
10 datasets using two different baseline methods. We show
that the optimal recall interval (i.e., x3 or x4), which is
found in Section 6 of the manuscript, generally works well
in different baseline methods and different task types. This
analysis demonstrates the proposed method’s applicability
in various continual learning scenarios.

3.3. Results on Factor Analysis

We extensively perform factor analysis in different CL sce-
narios. Tab. 5 demonstrate that the main components signif-
icantly improve respective baseline methods. These exper-
imental results reveal that the proposed components work
consistently well across diverse CL scenarios.

3.4. Results on two types of View-Batch Model

We compare two types of the view-batch model, such as
class- and sample-based approaches. While we augment
a single sample to multiple views for constructing a view-
batch, one can also do this view-batch construction in a
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Figure 1. Experimental results on evolving task. We report class
incremental accuracy at the end of each task, comparing the view-
batch model to baseline methods. We provide details of the task
evolution results in our repository.

class-based manner. For the class-based view-batch (VBM-
C) method, we constrain a single epoch to learn only spe-
cific class samples. If there are C classes, we train only
C/N class samples N repeated times per epoch. This al-
lows networks to learn the features of a specific class ex-
tensively in a single epoch. However, Tab. 6 shows that the
VBM-C over-escalates the degree of forgetting, leading to
lower performance of continual learning. On the other hand,
our sample-based approach (VBM-S) increases memory re-
tention fairly and achieves favorable performance compared
to the class-based one. We assume that our sample-based
approach balances the recall interval and extensive learn-
ing. Moreover, it indicates that it is more advantageous for
self-supervised learning to learn all class samples in a single
epoch.

3.5. Results on Task Evolution

We evaluate task evolution performances in the S-CIFAR-
100 dataset as shown in Figure 1. In task evolution, we
measure average class incremental accuracy at the end of
each task and report all of them to compare our view-batch
model and its respective baseline. As a result, our view-
batch model shows consistent performance improvements
in all steps of various evaluation scenarios.
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