
GFlowVLM: Enhancing Multi-step Reasoning in Vision-Language Models with
Generative Flow Networks

Supplementary Material

A. Preliminaries

A.1. GFlowNets
We summarize the necessary preliminaries of GflowNets
and encourage readers to refer to [2] for deeper understand-
ing. In a directed acyclic graph G = (S,A) with states S
and directed actions A, a complete trajectory is any trajec-
tory starting in initial state s0 and ending in terminal state
x ∈ X where X ⊂ S. There is a unique initial state s0 ∈ S
with no parents. States with no children are called terminal,
and the set of terminal states is denoted by X . A trajectory
τ = (s0 → . . . → sn = x) represents a complete sequence
ending in a terminal state x ∈ X where each (st → st+1)
is an action. The trajectory flow F : T → R≥0 defines
flows over trajectories, with state flow F (s) =

∑
s∈τ F (τ)

and with edge flow F (s → s′) =
∑

τ=(...→s→s′→...) F (τ).
The trajectory flow F is Markovian if there exist action dis-
tributions PF (·|s) over the children of each non-terminal
state s.

A.1.1. Forward and Backward Policies
A forward policy PF (·|s), often parametrized by a neu-
ral network, induces a distribution over trajectories and
a marginal distribution over the children of every non-
terminal state s ∈ S, with probabilities given by: PF (τ) =

PF (s0 → . . . → sn) =
∏n−1

t=0 PF (st+1|st) ∀τ ∈ T .
The distribution over complete trajectories that arises from
a forward policy satisfies a Markov property. The forward
policy can then be used to sample terminal states x ∈ X
by starting at state s0 and iteratively sampling actions from
PF . A backward policy PB(τ) = PB(sn → . . . → s0) =∏n−1

t=0 PB(st|st+1) ∀τ ∈ T . If F is markovian flow, then
PF and PB can be computed in terms of state and edge
flows as: PF (s

′|s) = F (s→s′)
F (s) and PB(s|s′) = F (s→s′)

F (s′) .
Given a non-negative reward function R : X → R≥0,
GFlowNets aim to learn a policy such that the probabil-
ity of sampling a state x ∈ X is proportional to R(x).
The marginal likelihood of sampling a state x ∈ X is
the sum of likelihoods of all complete trajectories that ter-
minate at x. If the objective function is globally mini-
mized, then the likelihood of terminating at state x is pro-
portional to R(x). Formally, the learning problem solved
by GFlowNets is to estimate a policy PF over trajectories
such that there exists a normalizing constant Z satisfying:
R(x) = Z

∑
τ=(s0→...→sn=x) PF (τ) ∀x ∈ X , where

Z = F (s0) =
∑

τ∈T F (τ) is total flow at the initial state,
and τ ∈ T is the trajectory.

A.2. Motivating Example
We include a practical example from ALFWorld demon-
strating how GFlowVLM can be applied to embodied AI
tasks in Fig. 4. The agent is presented with a visual obser-
vation of a simulated household environment and a high-
level goal in natural language, such as ”Put keychain in ot-
toman.” The task requires the agent to generate a valid se-
quence of actions (e.g., open drawer → take keychain from
drawer → close the opened drawer → go to ottomann →
place keychain in ottoman). Importantly, there are multiple
valid plans that achieve the same goal, with subtle causal
constraints (e.g., the drawer must be open before taking
the keychain from it, and objects must be picked up be-
fore being moved). We observe that models trained with
PPO tend to converge on the most common or shortest path,
while GFlowVLM generates a more diverse set of valid
action sequences, reflecting a richer understanding of the
causal structure of the environment. This example demon-
strates GFlowNets’ strength in reasoning over multimodal
inputs and learning structured, stochastic policies that pre-
serve functional diversity.

B. Environments

B.1. ALFWorld
ALFWorld [31] is an embodied AI environment combining
a text-based interactive setup with a vision-language plan-
ning dataset. It includes six goal-conditioned tasks: “Pick
& Place”, “Examine in Light”, “Clean & Place”, “Heat &
Place”, “Cool & Place”, and “Pick Two & Place”. The agent
must plan and act based on visual cues and textual instruc-
tions (e.g., “go to shelf 1”) that specify the task. Unlike
gym cards, where all states share the same action space,
ALFWorld has a state-dependent action space At; actions
are context-dependent (e.g., “put some pillows on the arm-
chair”, the agent can only place a pillow after picking it up).
Our prompt instructs the VLM to choose from the admissi-
ble actions At, and we evaluate Out-Of-Distribution (OOD)
performance using a test set of previously unseen scenes
(see detailed prompt templates in Tab. 9 and Tab. 10). We
use the same non-negative components of the reward func-
tion used in [41], which includes sub-goal and goal rewards:
r(st, at, st+1|gtask) = 50 ∗ 1{st+1 = gtask} + 1{st+1 =
gtask}. We do not include the negative component of the
reward function represented as −1{at /∈ At(st)} in [41],
since the actions are always selected from the admissible ac-
tions provided in the input prompt pt. The rewards are non-

Prompt:
You are an ALFWorld Embodied Environment expert. Your goal is to select the
best next action from Admissible next actions based on the current state and
image to complete the task.
Task: Your task is to put keychain 1 on ottoman 1.
State 0: [Welcome to TextWorld, ALFRED! =- You are in the middle of a room. Looking
quickly around you, you see a sofa 1, a sofa 2, a coffeetable 1, a drawer 1, a drawer 2, a
drawer 3, a drawer 4, a drawer 5, a drawer 6, a drawer,];
Admissible Next Actions: [go to sofa 1, go to sofa 2, go to coffeetable 1, go to drawer 1,
go to drawer 2, go to drawer 3, go to drawer 4, go to drawer 5, go to drawer 6, go to drawer
7, close drawer 7, …..]
Your response should be a valid JSON file in the following format:
{
”thoughts”: ”first describe what do you see in the image using the text
description, then carefully think about which action to complete the task.”,
”action”: ”an admissible action” or “[DONE]”
}

PPO GFlowVLM

Figure 4. Overview of the prediction of diverse sequence using GFlowVLMs as compared to PPO for AlfWorld scenarios. The model
takes the image of sequence and prompt as input, and generates the next number of sequence by implicitly modeling the causality.

negative, making it suitable for Var-TB and SubTB losses.
However, since it lacks dense rewards for every transition,
we didn’t use GFlowVLM with DB loss on this task.

B.2. NumberLine
This task involves moving a number along a synthetic num-
ber line to reach a target. NumberLine requires identify-
ing two numbers in an image: “target: c” and “current:
yt”, where c and yt are both integers such that c, yt ∈
[nmin, nmax]. The agent’s goal is to align yt with c by
outputting an action at from the discrete set {“+”, “-”,
[DONE](if applicable)}. Actions “+” and “-” adjust yt± 1,
while [DONE] signals task completion (see detailed prompt
template in Tab. 7). An episode ends when the yt = x, or
when the maximum step T = 2nmax is reached, which
is the default setup of the environment. We set nmin and
nmax as 0 and 5, respectively for the in-distribution exam-
ples, and set nmin and nmax as 10 and 50 for generating
OOD examples. In the reward function used in [41], an
agent receives a reward of r(st, at) = 1 when yt+1 = c, a
penalty of r(st, at) = −1 upon taking an action that does
not move the current number yt to the target c, and a reward
of r(st, at) = 0, otherwise. For GFlowVLM, we revise the
reward function with non-negative values as GFlowNets in-
herently require non-negative as follows:

R(x) = R(c, yt) =
l

|c− yt|+ 1
(9)

where l is a scaling constant set to 100. This reward
incentivizes the model to bring the current number closer
to the target, progressively increasing the reward as the gap
decreases. For fair comparison, we run RL4VLM [41] with
revised reward structure.

B.3. Blackjack
The Blackjack task requires the VLM to reason with visual
information and adapt to stochastic outcomes. The obser-
vation ot includes two dealer cards (one face-down) and the
player’s cards. The agent aims to win by selecting an ac-
tion at from {“stand”, “hit”, [DONE](if applicable)} (see
detailed prompt template in Tab. 8). In the reward function
used in [41], an agent receives a reward of r(x) = 1, 0,−1
upon win, draw and loss, respectively. Since GFlowNets in-
herently require non-negative reward, we revise the reward
function to replace non-negative values as follows:

R(x) = max(1× 10−10, (r(x) + 1)× 10), (10)

where r(x) represents the environment’s original reward for
state x. This scales the rewards and ensures they are strictly
non-negative. For fair comparison, we run RL4VLM [41]
with revised reward structure.

R(x) represents the desirability or quality of a complete
trajectory with final state x, similar to RL. It defines the tar-
get distribution from which the GFlowNet learns to sample,
where higher-reward outcomes should be sampled more fre-
quently.

C. Training Objectives
We adopt three different objective functions of GFlowNets,
Trajectory-Balance (TB), Subtrajectory-Balance (SubTB),
and Detailed-Balance (DB), to fine tune the VLM.

C.1. Variance Trajectory Balanced (Var-TB) Loss
The Trajectory-Balanced (TB) objective [23] ensures that
the probability of generating a complete trajectory τ =
(s0 → s1 → · · · → sn = x) is proportional to the re-
ward R(τ). Under the Markovian assumption, the forward
policy PF (st|st−1) transitions from state st−1 to st, while
the backward policy PB(st−1|st) ensures consistency be-
tween forward and backward flows. This objective is given
by:

Z

n∏
t=1

PF (st|st−1; θ) = R(x)

n∏
t=1

PB(st−1|st; θ), (11)

where Z is the partition function that normalizes the dis-
tribution.

We now change s to z to match our definition of state
in the main paper, where z0:t consists of a visual observa-
tion ot and an input prompt pt containing goal description,
history states s0:t−1, history actions a0:t−1, and admissible
actions At. We use ⊤, which is the [DONE] symbol, to
represent the terminal state x of a trajectory. We adopt this
notation because, in practice, the VLM predicts the action
⊤ to signify termination. This practical adaptation ensures
consistency between the theoretical representation of termi-
nal states and the actual predictions made by the VLM dur-
ing inference.

Under the non-Markovian assumption of generating a
complete trajectory τ = (z0 → z1 → · · · → zn = x),
and after adding goal into condition, we have:

Z

n∏
t=1

PF (zt|z0:t−1, g; θ) = R(x)

n∏
t=1

PB(zt−1|zt:n, g; θ),

(12)

From [43], an estimation Z for each trajectory τ can be
expressed as:

ζ(τ ; θ, g) = log

∏n
t=1 PF (zt|z0:t−1), g; θ)

R(x)
∏n

t=1 PB(zt−1|zt:n, g; θ)

= log

∏n
t=1 PF (zt|z0:t−1, g; θ)

R(x)

(13)

where PB = 1 in our case since we formulate the trajec-
tories as a tree structure, where a child state has only one
parent state. In the optimal case, ζ(τ ; θ, g) is equal to true
logZ. The Variance-Trajectory-Balanced loss function aim
to minimize the variance of ζ(τ ; θ, g) across trajectories to
make the balance of the trajectories. The final Variance-
Trajectory-Balanced loss is then defined as:

LVarTB(τ ; θ) =
1

K

K∑
k=1

(
ζ(τk; θ, g)− Eτ

[
ζ(τ ; θ, g)

])2

,

(14)

where K represents the number of sampled trajectories.
This loss ensures that high-reward trajectories are sampled
more frequently by the policy.

C.2. Subtrajectory Balanced (SubTB) Loss
The Subtrajectory-Balanced (SubTB) loss [22] operates on
subtrajectories of the form τ = (z0 → z1 → · · · → zm).
The subtrajectory balance ensures that each segment of the
reasoning path or structure remains consistent, where the
flows are balanced locally between forward and backward
transitions. Under the non-Markovian assumption and after
adding goal into conditions, the subtrajectory balance con-
dition is expressed as:

F (z0)

m∏
t=1

PF (zt|z0:t−1), g; θ) =

F (zm)

m∏
t=1

PB(zt−1|zt:m), g; θ),

(15)

where F (z0) and F (zm) represent the flow into the ini-
tial (z0) and final state (zm) of the subtrajectory, respec-
tively. Following [27], when all states zt are terminable
with ⊤, we have F (zt)PF (⊤|z0:t) = R(⊤). Then the
SubTB loss can be formulated as:

LSubTB(z0:m, g; θ) =
∑

0≤i<j≤m(
log

R(z0:i⊤)
∏j

k=i+1 PF (zk|z0:k−1, g; θ)PF (⊤|z0:j , g; θ)
R(z0:j⊤)PF (⊤|z0:i, g; θ)

)2

(16)

where ⊤ is the [DONE] symbol, denoting a trivial termi-
nal state, and process continues until [DONE] symbol ⊤
is generated similar to [8]. This loss penalizes discrepan-
cies in local transitions and ensures that all subsegments of
a trajectory follow the correct balance conditions, reducing
variance in smaller parts of the trajectory.

C.3. Detailed Balanced (DB) Loss

The Detailed-Balanced (DB) loss [2] is used to ensure that
each transition st → st+1 between two states is balanced by
matching the forward and backward flows at every step of
the trajectory. The detailed balance condition is expressed
as:

F (st)PF (st+1|st) = F (st+1)PB(st|st+1), (17)

where F (st) and F (st+1) represent the flow at states st
and st+1, respectively. Under the non-Markovian assump-
tion of generating a complete trajectory τ = (z0 → z1 →
· · · → zn → ⊤), where ⊤ is the terminal state of the se-
quence, DB loss is formulated as:

LDB(z0:t → z0:t+1, g; θ) =(
log

R(z0:t⊤)PF (zt+1|z0:t, g; θ)PF (⊤|z0:t+1, g; θ)

R(z0:t+1⊤)PF (⊤|z0:t, g; θ)

)2

.

(18)

This loss ensures that every state-to-state transition fol-
lows the correct flow, preventing inconsistencies in the tra-
jectory construction.

Comparisons of Loss Functions TB loss controls the
variance of ζ for the sampled trajectories, not the individual
trajectory. Its main role is to bias sampling so that trajectory
selection probability aligns with rewards [9]. In addition,
DB loss excels with dense rewards by ensuring flow consis-
tency at each state, while SubTB and TB perform better in
sparse settings by optimizing flow across (sub)trajectories.
Additionally, TB is suited for tasks with known full se-
quences, and SubTB for costly large-trajectory sampling.

Computational Complexity In practice, we calculate
(sub)trajectory or transition-based loss functions, which op-
erate over (sub)trajectories or sampled transitions rather
than the full state space. This allows us to efficiently handle
the non-Markovian dependencies with linear complexity.

D. Details of Experimental Setup

In this section, we outline the experimental setup used to
evaluate our approach across various tasks. We describe the
key components of our implementation, including the data
collection, diversity metric, and hyperparameters. By pro-
viding these details, we aim to ensure reproducibility and
clarify how the proposed method integrates into different
experimental frameworks.

D.1. Off-Policy Data Collection
In this section, we describe our approach to off-policy data
collection used in GFlowVLM for two distinct tasks, Num-
berline and Blackjack, emphasizing the integration of high-
quality trajectories to enhance model training. These strate-
gies ensure that the model learns from both successful and
diverse trajectories, even when its on-policy performance
falls short.

Numberline During training, if the on-policy trajectory
generated by the model fails to move the current number
correctly towards the target, we augment the dataset by
adding an off-policy, ground-truth trajectory to the buffer.
These ground-truth trajectories represent successful paths
that the model can follow to achieve the goal. By incor-
porating these accurate trajectories, we provide the model
with additional supervision, which helps it learn to general-
ize better to unseen instances. This ensures the model ben-
efits from examples of correct behavior, even when its pre-
dictions deviate from the optimal path. Fig. 6 illustrates the
generation of both correct and incorrect trajectories, high-
lighting how diversity in training trajectories is encouraged
to improve robustness.

Blackjack For the stochastic Blackjack task, determinis-
tic ground-truth trajectories are not directly available due
to the probabilistic outcomes of card draws. Instead, we
generate high-quality off-policy trajectories using a rule-
based heuristic: The agent ”stands” when the hand value
is 17 or higher and ”hits” otherwise. This strategy aligns
with fundamental Blackjack principles, balancing the risk
of exceeding a hand value of 21 against the potential for
improvement by drawing additional cards. By leveraging
this rule-based approach, we ensure that the training buffer
includes trajectories that reflect a realistic yet principled
decision-making process. Figure 7 demonstrates how both
correct and incorrect trajectories are generated in a tree
structure, promoting diversity in the training data and en-
abling the model to better handle a range of scenarios.

D.2. SFT Dataset Collection
To create the SFT dataset, we iteratively interact with the
environment to generate successful trajectories. For each
successful trajectory, we manually append the “[DONE]”
token as the final action in the last state, explicitly marking
the completion of the task. This approach aims to teach the
model to predict the “[DONE]” token as the appropriate
action when the goal state is achieved.

Numberline For the Numberline task, we execute
ground-truth actions in the environment until the current
state matches the target state. At this point, we append

the “[DONE]” token to indicate task completion. This pro-
cess generated 8,000 data points with “[DONE]” actions
and 20,000 additional data points for other actions, using
the base SFT dataset in [41].

Blackjack For Blackjack, we adhere to the standard 17-
point rule to determine actions. When the optimal decision
is to take no further action, we append the “[DONE]” to-
ken to the trajectory. This yielded 15,000 data points with
“[DONE]” actions and 50,000 for other actions, utilizing
the SFT dataset from [41].

ALFWorld For ALFWorld, we rely on expert actions de-
rived from a heuristic [31]. At the end of each success-
ful trajectory, we append the “[DONE]” token to signify
task completion. This resulted in 15,000 data points with
“[DONE]” actions and 45,000 for other actions using the
SFT dataset from [41].

D.3. Diversity Metric
The diversity metric introduced in [40] calculates the diver-
sity of successful trajectories found by a policy under the
same number of samplings at inference time. Specifically,
it is defined as follows:

Div =

∑n
i=1 Si · I(Si ≥ 1)∑n

i=1 I(Si ≥ 1)
≥ 1 (19)

where n is the total number of tasks, Si is the number of
successful trajectories found for the i-th task, and I(Si ≥ 1)
is an indicator function that equals 1 if at least one success-
ful trajectory is found for the i-th task, and 0 otherwise.
The denominator represents the number of tasks where the
model finds at least one successful trajectory, while the nu-
merator sums the total number of successful trajectories
across all tasks. The smallest possible Div is 1, indicat-
ing that a method finds at least one successful trajectory on
average. For example, a Div = 1.2 suggests that, on av-
erage, a method finds 1.2 different successful trajectories.
The (Div@N) metric used in the main paper represents the
diversity of successful trajectories after sampling N trajec-
tories’ samples.

D.4. General Setup for Baselines and GFlowVLM
All experiments are conducted on an H100 DGX machine
with 80GB of memory. During VLM training, we directly
optimize all trainable components, including the vision en-
coder, LLM, and MLP projector. For baseline methods,
we utilize the open-source implementations provided in the
original papers for SFT and RL4VLM [41]. A CosineAn-
nealingLR scheduler is adopted, starting with an initial
learning rate of 1 × 10−5, decaying to a final learning rate
of 1×10−9, and reaching its maximum learning rate at step

Figure 5. Average success rates (%) of our method under different
CoT weighting factor λ on NumberLine across three loss func-
tions.

25. For GFlowVLM, a buffer size of 4 is used across all
tasks. To ensure a fair comparison, we report the number of
environment steps for each method.

D.5. CoT Weighting Factor λ

PF (zt+1|z0:t, g; θ) = PAction(at|z0:t, ct, g; θ)+
λPCoT(ct|z0:t, g; θ),

(20)

The CoT weighting factor, λ ∈ [0, 1], controls the in-
fluence of CoT reasoning within our framework, as dis-
cussed briefly in the main paper (rewritten here in Eq. (20)).
To assess the impact of λ, we compute the average per-
formance of our proposed framework, GFlowVLM, using
three loss functions, each evaluated with four random seeds.
As shown in Figure 5, a moderate λ (e.g., 0.4) yields the
best performance on NumberLine tasks across three differ-
ent loss functions. When λ is too high (0.8) or too low
(0.2), PCoT(ct|z0:t, g; θ) or PAction(at|z0:t, ct, g; θ) overly
influences the estimation of PF , respectively, leading to im-
balanced learning dynamics. Thus, setting λ = 0.4 effec-
tively balances CoT and action learning, enhancing reason-
ing performance. We use the same value of λ = 0.4 across
all experiments in this work.

E. Qualitative Results
We present an example in ALFWorld in Tab. 11, with the
goal of ”put some keychains on the ottoman” to illustrate
key insights into our method.

Our method encourages exploration by sampling propor-
tional to the reward, allowing it to avoid getting stuck in
suboptimal states—a common limitation observed in PPO.
This exploration not only prevents suboptimal convergence

Figure 6. An example of off-policy data collection for Number-
Line in a tree structure.

Figure 7. An example of off-policy data collection for BlackJack
in a tree structure.

but also enables the model to generate more diverse solu-
tions, as demonstrated by the multiple trajectories shown
in Tab. 11. Through repeated sampling, our method effec-
tively considers a wider range of potential paths to achieve
the goal.

PPO, in contrast, tends to rely on superficial semantic

Method Train Data Assump. SFT Init. NL NL-OOD BJ

Ablations of RL4VLM
RL4VLM [41]∗ On M ✓ 34.8 1.9 23.5
RL4VLM [41] On M ✓ 89.4 3.1 40.2
RL4VLM [41] On NM ✓ 90.3 4.4 41.0

Ablations of GFlowVLM w/ Var-TB w/ On and Off-Policy
GFlowVLM w/ Var-TB On M ✓ 93.4 4.7 41.0
GFlowVLM w/ Var-TB On NM ✓ 100.0 6.2 41.4
GFlowVLM w/ Var-TB Off M ✓ 94.5 17.2 42.0
GFlowVLM w/ Var-TB Off NM ✓ 100.0 17.3 43.0

Ablations of GFlowVLM w/ SubTB w/ On and Off-Policy
GFlowVLM w/ SubTB On M ✓ 91.7 4.0 40.2
GFlowVLM w/ SubTB On NM ✓ 100.0 7.0 41.7
GFlowVLM w/ SubTB Off M ✓ 94.8 17.3 40.5
GFlowVLM w/ SubTB Off NM ✓ 100.0 16.7 42.4

Ablations of GFlowVLM w/ DB w/ On and Off-Policy
GFlowVLM w/ DB On M ✓ 90.1 5.3 40.0
GFlowVLM w/ DB On NM ✓ 100.0 9.1 42.2
GFlowVLM w/ DB Off M ✓ 93.6 16.3 41.5
GFlowVLM w/ DB Off NM ✓ 100.0 18.6 43.8

Table 5. Ablations of GFlowVLM with Markovian assumption for NumberLine (NL) and BlackJack (BJ) tasks for in-distribution and
out-of-distributions (OOD) tasks. ∗We use the same reward function as ours. NL-OOD stands for Number line with out-of-distribution
tasks. On and Off represent On-Policy and Off-Policy, respectively. M and NM stands for Markovian and non-Markovian assumption
respectively.

Method Assump. Pick Look Clean Heat Cool Pick2 Avg. OOD Div@16

Ablations of RL4VLM
RL4VLM [41] M 47.4 14.7 10.4 14.4 18.8 18.0 21.7 4.8 1.12
RL4VLM [41] NM 49.1 13.5 9.8 15.2 20.1 20.6 22.1 6.1 1.11

Ablations of GFlowVLM w/ SubTB
GFlowVLM w/ SubTB M 46.0 10.1 9.7 14.7 24.6 23.7 22.1 8.0 1.34
GFlowVLM w/ SubTB NM 50.0 23.1 10.0 18.7 24.3 23.7 26.1 12.3 1.40

Ablations of GFlowVLM w/ Var-TB
GFlowVLM w/ Var-TB M 45.1 12.2 11.3 15.7 20.6 24.7 22.9 7.6 1.37
GFlowVLM w/ Var-TB NM 50.0 22.2 10.2 16.1 22.7 21.9 25.7 10.9 1.41

Table 6. Ablations of GFlowVLM with Markovian assumption for ALFWorld. Since Alfworld does not provide dense rewards, we can
not not using DB loss here. Furthermore, while RL4VLM and GFlowVLM with SubTB are trained with SFT initialization, GFVLM
with TB-Var is without STF initialization since we do not need to model the flow. M and NM stands for Markovian and non-Markovian
assumption respectively.

patterns to make decisions. For instance, it may prioritize
reaching the ”ottoman” directly without first retrieving the
keychains, as the term ”ottoman” semantically aligns with
the goal. This behavior highlights the risk of overfitting to
pattern recognition rather than aligning actions with the ul-
timate reward.

Image input:

NumberLine prompt template without history information (Markovian)

You are playing a game called number line. You will see a target number and a current number in the image. And your goal is to
move the current number closer to the target by choosing either adding or subtracting one to the current number. You need to first
give the thoughts and then you can choose between ["+", "-"]. Use “[DONE]” when you think you have completed the task.
Your response should be a valid JSON file in the following format:

{

“current number”: ”x”,

“target number”: ”x”,

“thoughts”: “first read out the current and target number, then think

carefully about which action to choose”,

“action”: “-” or “+” or “[DONE]”
}

NumberLine prompt template with history information (non-Markovian)

You are playing a game called number line. You will see a target number and a current number in the image. And your goal is
to move the current number closer to the target by choosing either adding or subtracting one to the current number. Below are the
history actions and states you’ve done.

State 0: 1

Action 1: "+"

State 1: 2

Based on the history information, you need to first give the thoughts and then you can choose between ["+", "-"]. Use
“[DONE]” when you think you have completed the task.Your response should be a valid JSON file in the following format:

{

“current number”: ”x”,

“target number”: ”x”,

“thoughts”: “first read out the current and target number, then think

carefully about which action to choose”,

“action”: “-” or “+”or “[DONE]”
}

Table 7. Prompt Template with Markovian and non-Markovian assump. for NumberLine. The sentence in brown is only applicable for
SubTB and DB losses.

Image input:

BlackJack prompt template without history information (Markovian)

You are a blackjack player. You are observing the current game state. You need to first give an explanation and then
you can choose between ["stand", "hit"]. Use “[DONE]” when you think you have completed the task. Your
response should be a valid JSON file in the following format:

{

“thoughts”: “first describe your total points and the dealer’s total points then think about which action to choose”,
“action”: “stand” or ”hit” or “[DONE]”

}

BlackJack prompt template with history information (non-Markovian)

You are a blackjack player. You are observing the current game state. Below are the history actions and states.

State 0: 14 points

Action 1: "hit"

State 1: 15 points

Based on the history information, you need to first give an explanation and then you can choose between [‘‘stand",
‘‘hit"]. Use “[DONE]” when you think you have completed the task. Your response should be a valid JSON file
in the following format:

{

“thoughts”: ”first describe your total points and the dealer’s total points then think about which action to choose”,
“action”: “stand” or ”hit” or “[DONE]”

}

Table 8. Prompt Templates with Markovian and non-Markovian assump. for BlackJack. The sentence in brown is only applicable for
SubTB and DB losses.

Image input:

ALFWorld prompt template without history information (Markovian)

You are an ALFWorld Embodied Environment expert. Your goal is to select the best next action from the Admissible
Next Actions based on the current state and image to complete the task. Use “[DONE]” when you think you have
completed the task.

Task: Your task is to put a cool mug in cabinet.

Current State: "[’You arrive at loc 1. The cabinet 1 is open. On the cabinet
1, you see a pan 1, a kettle 1, a winebottle 1, a apple 1, a stoveknob 1, a
stoveknob 2, a stoveknob 3, a stoveknob 4, a knife 1, a saltshaker 1, and a
bread 1.’]."

Admissible Next Actions: [’go to countertop 1’, ’go to cabinet 2’, ’go to countertop
2’, ’go to stoveburner 1’, ’go to drawer 1’, ’go to drawer 2’, ’go to drawer
3’, ’go to stoveburner 2’, ’go to stoveburner 3’, ’go to stoveburner 4’, ’go
to drawer 4’, ’go to cabinet 3’, ’go to cabinet 4’, ’go to microwave 1’, ’go
to cabinet 5’, ’go to cabinet 6’, ’go to cabinet 7’, ’go to sink 1’, ’go to
sinkbasin 1’, ’go to fridge 1’, ’go to toaster 1’, ’go to coffeemachine 1’,
’go to cabinet 8’, ’go to drawer 5’, ’go to drawer 6’, ’go to drawer 7’, ’go
to drawer 8’, ’go to shelf 1’, ’go to shelf 2’, ’go to countertop 3’, ’go to
shelf 3’, ’go to drawer 9’, ’go to garbagecan 1’, ’open cabinet 1’, ’close
cabinet 1’, ’take pan 1 from cabinet 1’, ’take kettle 1 from cabinet 1’, ’take
winebottle 1 from cabinet 1’, ’take apple 1 from cabinet 1’, ’take stoveknob
1 from cabinet 1’, ’take stoveknob 2 from cabinet 1’, ’take stoveknob 3 from
cabinet 1’, ’take stoveknob 4 from cabinet 1’, ’take knife 1 from cabinet
1’, ’take saltshaker 1 from cabinet 1’, ’take bread 1 from cabinet 1’,
’inventory’, ’look’, ’examine cabinet 1’].

Your response should be a valid JSON file in the following format:

{

“thoughts”: ”first describe what do you see in the image using the text
description, then carefully think about which action to complete the task.”,

“action”: “an admissible action” or “[DONE]”
}

Table 9. Prompt template with Markovian assump. for ALFWorld. The sentence in brown is only applicable for SubTB and DB losses.

Image input:

ALFWorld prompt template with history information (non-Markovian)

You are an ALFWorld Embodied Environment expert. Your goal is to select the best next action from the Admissible Next Actions
based on the previous and current states and image to complete the task. Use ”[DONE]” when you think you have completed the
task.

Task: Your task is to put a cool mug in cabinet.

State 0: [’-= Welcome to TextWorld, ALFRED! =- You are in the middle of a room. Looking
quickly around you, you see a countertop 1, a coffeemachine 1, a cabinet 1, a cabinet
2, a cabinet 3, a sink 1, a cabinet 4, a drawer 1, a drawer 2, a drawer 3, a sinkbasin
1, a cabinet 5, a toaster 1, a fridge 1, a cabinet 6, a cabinet 7, a cabinet 8, a
microwave 1, a cabinet 9, a cabinet 10, a cabinet 11, a drawer 4, a cabinet 12, a
drawer 5, a stoveburner 1, and a stoveburner 2.’]
Action 1: "open cabinet 1."
State 1: "[’You arrive at loc 1. The cabinet 1 is open. On the cabinet 1, you see a pan
1, a kettle 1, a winebottle 1, a apple 1, a stoveknob 1, a stoveknob 2, a stoveknob 3,
a stoveknob 4, a knife 1, a saltshaker 1, and a bread 1.’]."

Admissible Next Actions: [’go to countertop 1’, ’go to cabinet 2’, ’go to countertop 2’,
’go to stoveburner 1’, ’go to drawer 1’, ’go to drawer 2’, ’go to drawer 3’, ’go to
stoveburner 2’, ’go to stoveburner 3’, ’go to stoveburner 4’, ’go to drawer 4’, ’go to
cabinet 3’, ’go to cabinet 4’, ’go to microwave 1’, ’go to cabinet 5’, ’go to cabinet
6’, ’go to cabinet 7’, ’go to sink 1’, ’go to sinkbasin 1’, ’go to fridge 1’, ’go
to toaster 1’, ’go to coffeemachine 1’, ’go to cabinet 8’, ’go to drawer 5’, ’go to
drawer 6’, ’go to drawer 7’, ’go to drawer 8’, ’go to shelf 1’, ’go to shelf 2’, ’go to
countertop 3’, ’go to shelf 3’, ’go to drawer 9’, ’go to garbagecan 1’, ’open cabinet
1’, ’close cabinet 1’, ’take pan 1 from cabinet 1’, ’take kettle 1 from cabinet 1’,
’take winebottle 1 from cabinet 1’, ’take apple 1 from cabinet 1’, ’take stoveknob 1
from cabinet 1’, ’take stoveknob 2 from cabinet 1’, ’take stoveknob 3 from cabinet 1’,
’take stoveknob 4 from cabinet 1’, ’take knife 1 from cabinet 1’, ’take saltshaker 1
from cabinet 1’, ’take bread 1 from cabinet 1’, ’inventory’, ’look’, ’examine cabinet
1’].

Your response should be a valid JSON file in the following format:

{

”thoughts”: ”first describe what do you see in the image using the text
description, then carefully think about which action to complete the task.”,

”action”: ”an admissible action” or “[DONE]”
}

Table 10. Prompt template with non-Markovian assump. for ALFWorld. The sentence in brown is only applicable for SubTB and DB
losses.

Goal: put some keychains on ottoman.

PPO Ours-Traj. 1 Ours-Traj. 2

Action: go to
coffeetable 1

Action: open
drawer 6

Action: open
drawer 7

Action: go to
ottoman 1

Action: close
drawer 6

Action: close
drawer 7

Action: take pillow
1 from ottoman 1

Action: go to
drawer 5

Action: go to
drawer 5

Action: inventory
Action: open

drawer 5
Action: open

drawer 5

Action: go to
drawer 7

Action: take
keychain 1 from

drawer 5

Action: take
keychain 1 from

drawer 5

Action: look
Action: go to

ottoman 1
Action: go to

ottoman 1

Action: go to
coffeetable 1

Action: put
keychain 1 in/on

ottoman 1

Action: put
keychain 1 in/on

ottoman 1

Table 11. Qualitative results for ALFWorld task. GFlowVLM
generates diverse trajectories in contrast to PPO.

F. Ablation Study of Markovian and non-
Markovian

To evaluate the impact of Markovian and non-Markovian
assumptions on performance, we conduct an ablation study
with our method, GFlowVLM with both On-Policy and Off-
Policy training, and RL4VLM [41] across 3 tasks: Number-
Line and Blackjack and ALFWorld. The primary difference
between these two assumptions lies in the prompt template
used during training. Under the Markovian assumption, the
model operates with prompts that do not include historical
information about prior actions and states, relying solely
on the current state. Conversely, the non-Markovian as-
sumption incorporates the history of actions and states into
the prompt, providing richer contextual information (see
prompt templates in Tab. 7, Tab. 8, Tab. 10, Tab. 9 for de-
tails).

As shown in Tab. 5, the non-Markovian assumption
leads to consistently better performance across all tasks.
In NumberLine and Blackjack, GFlowVLM achieves sub-
stantial improvements in both in-distribution and out-of-
distribution scenarios under the non-Markovian assump-
tion.For instance, in the Numberline task, GFlowVLM
with the DB loss demonstrates improved out-of-distribution
performance when transitioning from Markovian to non-
Markovian assumptions. Specifically, with on-policy train-
ing, the performance increases from 5.3 to 9.1, while with
off-policy training, it rises from 16.3 to 18.6. Similarly, in
Blackjack, non-Markovian prompts result in a higher aver-
age success rate.

In ALFWorld tasks, as demonstrated in Tab. 6, the non-
Markovian assumption yields marked gains in both average
performance and out-of-distribution generalization. For in-
stance, GFlowVLM with SubTB achieves an average suc-
cess rate of 26.1 under the non-Markovian assumption com-
pared to 22.1 under the Markovian setup. These results
highlight the importance of historical context in improving
task performance, particularly for challenging scenarios re-
quiring long-term dependencies.

Interestingly, the non-Markovian assumption also bene-
fits the baselines, including RL4VLM, resulting in a perfor-
mance increase from 3.1 to 4.4 for Numberline for OOD
tasks. This suggests that GFlowVLM is better equipped to
leverage the additional context provided by non-Markovian
prompts, enabling it to capture richer dependencies and
improve both accuracy and diversity. Overall, the find-
ings confirm that the non-Markovian assumption provides a
more effective framework for reasoning-based tasks, partic-
ularly when combined with GFlowVLM’s structured learn-
ing approach.

	Introduction
	Related Works
	Preliminaries
	Motivating Experiment

	Methodology
	VLM as a policy: Fine tuning VLMs using GFlowNets to estimate actions
	Training Objectives
	Variance Trajectory Balanced (Var-TB) Loss
	Subtrajectory Balanced (SubTB) Loss
	Detailed Balanced (DB) Loss

	Experiments
	Baselines
	Environments

	Results Analysis
	Conclusion, Limitation, Future Works
	Preliminaries
	GFlowNets
	Forward and Backward Policies

	Motivating Example

	Environments
	ALFWorld
	NumberLine
	Blackjack

	Training Objectives
	Variance Trajectory Balanced (Var-TB) Loss
	Subtrajectory Balanced (SubTB) Loss
	Detailed Balanced (DB) Loss

	Details of Experimental Setup
	Off-Policy Data Collection
	SFT Dataset Collection
	Diversity Metric
	General Setup for Baselines and GFlowVLM
	CoT Weighting Factor

	Qualitative Results
	Ablation Study of Markovian and non-Markovian

