SelfSplat: Pose-Free and 3D Prior-Free Generalizable 3D Gaussian Splatting

Supplementary Material

A. Additional Details
A.1l. Architectural Details

For the prediction of 3D Gaussians [9], we utilize the
monocular, multi-view encoder and the fusion block. Un-
like previous methods that utilize DepthAnything [26] as a
monocular encoder [25, 28] or UniMatch [24] as a multi-
view encoder [4, 19], we only employ the encoder part
of Croco [23] as our monocular encoder which is trained
in a fully self-supervised manner. For the multi-view en-
coder, we adopt the backbone of [24] with randomly initial-
ized weights. Then, we unify features from monocular and
multi-view encoders using DPT [15] block. For a detailed
architecture for the fusion module, see Fig. 1.

A.2. Implementation Details

For our monocular encoder, we utilized Adapter [2], which
keeps the model parameters frozen while training additional
residual networks for each layer. Specifically, a residual
MLP block, comprising a down-projection layer and an up-
projection layer, is introduced within each layer of the trans-
former encoder. Considering the channel dimension of the
original encoder, C"™°" = 1024, we set the low rank hidden
dimension of AdaptMLP, C%%" = 32, to efficiently reduce
computational overhead while maintaining sufficient capac-
ity for adaptation.

For 3D Gaussian primitives, we set the order of spher-
ical harmonics expansion to 1, enabling the representa-
tion to extend beyond the Lambertian color model. When
warping the color model from each frame’s local coordi-
nate system into an integrated global space which requires
the Wigner matrices in general case, we simplify the ro-
tation of the first level of spherical harmonics, Yi(rq) =
(Y7 (ra), Y2 (ra), Yi(ra)], as follows:

r3 01 0
Yl(Td) = Eﬂrd, II=10 0 1 s
1 0 0

where r4 € S? is the viewing direction derived from the es-
timated camera poses. We adopt this warping protocol from
Splatter Image [21] which is a pose-required generalizable
3D reconstruction model using 3D Gaussian Splatting.

A.3. Training Details

We train all baseline models, including ours, using cus-
tom data loaders. For RealEstate]l0K [29] (RE10k) and
ACID [14] datasets, the distance between context frames
is progressively increased from 5 to 25, and target frames

are randomly selected between the context frames within
this range. Each model is trained for 200K iterations and
for baselines we used the default hyperparameter settings
provided by the respective authors. The only exception is
DBAREF [3], which is trained for 400K iterations due to
its official implementation supporting only a batch size of
one. We provide our detailed training hyperparameters in
Tab. | and we train our model on a singe H100 GPU, which
takes approximately for 3 days. For the experiment on
DL3DV [13] dataset, we initialize the model with pretrained
weights from RE10k dataset and train it for 50K iterations
on a single H100 GPU with a batch size of 6. The distance
between context frames is gradually increased from 2 to 10.
This procedure is applied to FlowCAM [18] in the same
way which is the baseline model on DL3DV dataset.

For VAE [11], which was initially designed for novel
view synthesis from a single image, we modify its architec-
ture following the approach in [27] to handle multi-view in-
put images. Specifically, we employ two separate encoders
and use their mean output as the input to the decoder which
synthesize novel view images. All other hyperparameters
remain the same as the official implementation.

SelfSplat
Config Value
optimizer Adam [10]
scheduler Linear
learning rate le-4
gradient clipping 0.5
batch size 12
total iters. 200,000
warmup iters. 2,000

Table 1. Training hyperparameters.

A 4. Evaluation Details

During the evaluation on RE10k and ACID datasets, we
set the interval between context frames to 40 and select the
middle frame as the target view point. This target frame is
used as the ground truth for metric evaluations in novel view
synthesis and camera pose estimation. For the overlap cat-
egories, we utilize the pretrained feature matching model,
RoMa [6], to estimate the overlap ratios between the first
context frame and the target frame.

For RE10k dataset, the split proportions are 18.26% for
large, 60.56% for medium, and 21.17% for small categories.
In ACID dataset [14], the proportions are 33.05% for large,
41.15% for medium, and 25.80% for small.
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Figure 1. Detailed 3D Gaussian prediction architecture. This module takes only context images as input.

B. Additional Experiment Analysis

B.1. Inference Cost

We report the memory and time consumption required to
synthesize a single 256 x 256 image during the inference
stage in Table 2. Memory usage is measured as the peak
memory during inference, while the number of rays per
batch is adjusted if necessary. Except for VAE [11], which
generates novel view images without rendering operations
(utilize 2D CNN blocks) and thus fail to reconstruct inter-
pretable 3D scene representations, our method achieves sig-
nificantly lower memory usage and faster rendering speed
with explicit 3D representations, demonstrating its effi-
ciency and practical usage in real-world scenarios.

Method | Mem. (GB)  Time (s)
VAE [11] 4.694 0.0003
DBAREF [3] 2.079 0.254
FlowCAM [18] 16.644 0.801
CoPoNeRF [7] 16.802 5.624
Ours 1.795 0.002

Table 2. Memory and time consumption analysis. All baselines
including ours are measured on a single NVIDIA RTX 4090 GPU.

B.2. Using N Context Views

We further evaluate the model’s performance across various
numbers of input views, considering its practical applica-
tion where more than two views are commonly used. The
total number of frames is evenly divided based on the num-
ber of context views, and target frames are sampled between
the context frames. Additionally, we generate a camera tra-
jectory using the selected view points (context and target),
and the Absolute Trajectory Error (ATE) is measured to val-
idate the accuracy of the reconstructed camera path. We
evaluate on RE10k dataset with 3 context views (80 frames)
and 4 context views (120 frames) settings. As shown in
Tab. 3 and Fig. 2, our method demonstrates superior perfor-
mance in both novel view synthesis and camera trajectory
estimation, as well as its ability to scale effectively with

multiple input views and estimations over extended ranges
without any further finetuning.

‘ 3 views (80 frames) ‘ 4 views (120 frames)

Method | PSNRT SSIM{ LPIPS, ATE| | PSNRT SSIM{ LPIPS| ATE|
FlowCAM 18] | 19.75 0630 0412 0048 | 1891  0.606 0449  0.081
Ours 2112 0761 0241 0031 | 1952 0717 0283  0.053

Table 3. Quantitative results of using different numbers of context
views on RE10k dataset.
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Figure 2. Visualization of camera trajectory on RE10k dataset.
Construction of trajectory only consider the translation part of the
estimated camera poses.



B.3. Additional Comparison

For the reader’s reference, we provide a comparison with
Splatt3R [17], which is also a pose-free, feed-forward Gaus-
sian Splatting method for 3D reconstruction and novel view
synthesis from stereo pairs. We omitted this model in the
main paper because it requires ground-truth depth and cam-
era pose annotations during training, which are not avail-
able in the datasets we used: RE10k, ACID [14], and
DL3DV [13]. Acknowledging the differences in training
data—Splatt3R was trained on ScanNet++ [5], whereas our
model was trained on RE10k—we evaluate them on the
DTU [8] dataset, which is an out-of-distribution dataset for
both. As shown in Tab. 4 and Fig. 3, our method achieves
better performance than the baseline in both evaluation met-
rics and visual quality, and also outperforms pixelSplat [1]
which is a pose-required method in training and evalua-
tion stage. The main reason Splatt3R cannot estimate a
consistent scene scale is its reliance on a fixed pretrained
MASIt3R [12] model, which is trained using metric camera
poses, and difference between estimated intrinsic parame-
ters and ground truth intrinsic parameters. Thus, using the
DTU dataset, which consists of unseen novel scenes, they
fail to align consistent 3D Gaussians.

Training Data ~ Method PSNR{T SSIMT LPIPS|
ScanNet++ [5]  Splatt3R [17] | 10.24 0.295 0.629

pixelSplat [1] 12.89 0.382 0.560
RE10k [29] MV Splat [4] 13.94 0.473 0.385
Ours 13.14 0.425 0.448

Table 4. Quantitative results of novel view synthesis on DTU
dataset. While pixelSplat [1] and MVSplat [4] are pose-required
methods, we include them for the reader’s reference.
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Figure 3. Qualitative comparison of novel view synthesis on DTU
dataset.

B.4. Baseline Comparisons

We provide additional baseline results on cross-dataset gen-
eralization in Tab. 5.

RE10k — ACID ACID — RE10k
Method | PSNRT SSIM7T Rot°| Trans.°| | PSNRT SSIM1 Rot.° | Trans.® ]
VAE 23.67 0.649 1.619 117.721 18.98 0.537 3.744 65.884
DBARF | 23.56 0.644 1.772 51.969 12.60 0.502 3.306 47.851
Ours 26.60 0.793 1.119 18.607 21.65 0.728 1.618 17.993

Table 5. Additional comparison on cross-dataset generalization.

B.5. Additional Ablation and Analysis

We provide additional ablation studies and analyses, focus-
ing on our encoder module. All methods are trained on
RE10k [29] for 50k iterations, following the same proce-
dure as in the main paper. As shown in Tab. 6, our feature
fusion module with CroCo [23] initialization shows supe-
rior results in evaluation metrics.

Method ‘ PSNRT SSIM1 LPIPS] Rot Avg.°| Trans. Avg.® |
Ours 22.65 0.764 0.222 1.036 13.705
No CroCo [23] Init 22.15 0.738 0.240 1.091 14.042
No Monocular Encoder 21.88 0.733 0.247 1.394 17.125
No Multi-view Encoder | 21.47 0.731 0.243 1.233 16.327

Table 6. Ablation studies on the encoder module design.

Pretrained weight. Since our goal is to use only unposed
raw video datasets without 3D priors, we utilized CroCo,
trained in a self-supervised manner. While DUSt3R [22]
or MASt3R [12] pre-trained weight could enhance perfor-
mance, we focus on demonstrating that 3D foundation mod-
els can be trained without costly 3D annotations.

B.6. Architectural and Evaluation Design

We designed our evaluation protocol assuming that there
are no given poses, so we made a separate pose block (con-
text and target) and a Gaussian branch (only context) inde-
pendently. Thus, target images are used to estimate camera
poses for following novel view synthesis evaluations. All
baselines follow this protocol in their original implementa-
tions, except for CoPoNeRF [7] which utilizes given cam-
era poses, so we substitute these poses in CoPoNeRF with
estimated ones for a fair comparison.

B.7. Depth Visualization

We also provide the visualization of depth maps generated
through rendering, which is essential for producing inter-
pretable 3D representations. By comparing the results of
our method with previous approaches, as shown in Fig. 4,
SelfSplat demonstrates robust and reliable depth maps de-
rived from 3D scene structures.

C. Limitations

While we demonstrate high-quality 3D geometry estimation
in this work, the current framework still possesses limita-
tions. First, further technical improvements are needed to
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Figure 4. Qualitative comparison of depth visualization on RE10k
dataset. Depth maps are obtained following the rendering process.

support wider baseline scenarios, such as a 360° scene re-
construction from unposed images in a single forward pass.
Second, our framework struggles with dynamic scenes
where both camera and object motion are present. Address-
ing these complex scenarios may benefit from incorporating
multi-modal priors [16, 20] for robust and consistent align-
ment across wide and dynamic scene space.

D. Additional Results

We provide additional results on the following pages includ-
ing novel view synthesis and epipolar line visualizations.
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Figure 5. Qualitative comparison of novel view synthesis on RE10k dataset.
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Figure 6. Qualitative comparison of novel view synthesis on ACID dataset.
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Figure 7. Qualitative comparison of novel view synthesis on DL3DV dataset.
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Figure 8. Epipolar lines visualization on RE10k dataset. We draw the lines from reference to target frame using relative camera pose.
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