Appendix

A. Experimental Details

Experimental Setting. All experiments and evaluations are

conducted on a single NVIDIA GeForce RTX A6000 48GB

GPU. We only use the inference stage of the models without

any fine-tuning or training.

Analysis Setting. In Sec. 4, we identify and analyze lo-

calization heads in various LVLMs. We use the RefCOCO

training set to prevent validation set leakage. To calculate
the selection frequency of individual heads, we randomly
select 1,000 image-text pair samples from the RefCOCO
training set and average the results over five trials to validate
consistency. When analyzing the selection frequency and

IoU, we binarize the attention weights by assigning 1 above

the mean value and O below it and calculate the IoU be-

tween the binarized attention weights and the ground-truth
mask. We repeat this process for 1,000 image-text pairs and
average the IoU scores.

Dataset Details. We evaluate our method on the following

datasets:

e RefCOCO, RefCOCO+ [24], and RefCOCOg [19]
datasets, sourced from MS-COCO [36], offer a collec-
tion of referring expressions and associated images. Re-
fCOCO consists of 19,994 images paired with 142,210
expressions, while RefCOCO+ includes 19,992 images
and 141,564 expressions. RefCOCOQOg, on the other hand,
contains 26,771 images and 104,560 expressions. The
expressions in RefCOCO and RefCOCO+ are generally
concise, with an average of 1.6 nouns and 3.6 words
per expression. In contrast, RefCOCOg features more de-
scriptive expressions, averaging 2.8 nouns and 8.4 words.

* ReasonSeg: The dataset and benchmark for reasoning
segmentation were first introduced in LISA [30]. The re-
sulting ReasonSeg benchmark consists of 1,218 image-
instruction-mask data samples, which are further divided
into three splits: training (239 samples), validation (200
samples), and test (779 samples).

Main Experiments Setting. We evaluate our method on the

following tasks:

» Referring Expression Comprehension (REC) and Refer-
ring Expression Segmentation (RES): The datasets eval-
uated for the main results in Sec.6.2 include RefCOCO
(validation, test-A, test-B), RefCOCO+ (validation, test-
A, test-B), and RefCOCOg (validation, test). All evalua-
tions were conducted using the UNC split.

* Reasoning Segmentation (ReasonSeg): Reasoning Seg-
mentation was first introduced in LISA [30]. This task
shares a similar formulation with the referring expression
segmentation task but is considerably more challenging.
The key distinction lies in the complexity of the query text
in reasoning segmentation. Rather than simple phrases
(e.g., “the blue mug”), the queries involve more nuanced

descriptions (e.g., “the container used for drinking, lo-
cated next to the plate”) or longer sentences (e.g., “Find
the item on the table that someone would use to hold lig-
uid, often paired with a saucer”). These queries demand
advanced reasoning and a deeper understanding of con-
textual and world knowledge. All reasoning segmentation
results were evaluated using the ReasonSeg benchmark,
which includes both the validation set and test set. Perfor-
mance was measured across short queries, long queries,
and overall, following the same experimental setup as
LISA [30] to ensure consistency in comparisons.
Ablation Studies Setting. In Sec. 6.3, we ablate the effec-
tiveness of each criterion and validate the selection meth-
ods. In this section, we provide details of the ablation stud-
ies.
For criterion ablation, we consider two apgrhoaches: @))

selecting heads based solely on the highest Sm’lg values, or
(2) selecting heads based solely on the lowest H (A*") val-
ues. In approach (1), we select the 10 heads with the highest
Sfr;lh values and calculate their selection frequency. Simi-
larly, in approach (2), we select the 10 heads with the lowest
H(A®%") values and calculate their selection frequency.

For selection validation, we introduce the ‘greedy’ se-
lection method, which selects the top-k heads per sample
without considering the overall selection frequency. When
applying the greedy selection method and criterion (1) si-
multaneously, we select the top-k heads with the highest
Sﬁ;{; values for each sample. Criterion (2) is applied in a
similar manner, simultaneously selecting the top-k heads
with the lowest H (A%") values for each sample.

B. Detailed Description of Algorithms
B.1. Spatial Entropy

Spatial entropy [2] adjusts the probability of attention being
focused in a region by factoring in the size of that region, en-
suring fair comparison across areas of different sizes. Note
that, our spatial entropy calculation is based on the previ-
ous work [45] which validated the effectiveness of spatial
entropy in image attention maps within vision transformer.
We begin by computing the image attention map A%" as
follows:

A" = ReLU (reshape(a®") —m), “4)

where the ReLU function is applied after reshaping by
P x P, and it retains only those values in a®” that are
greater than the mean m. Next, we identify the connected
components C ye.n = {C1,Cy, ..., C,} from A%h:

C 4¢.n = ConnectedComponents(A“"), 5)

where the connected components are determined by ap-
plying an 8-connectivity relation among the non-zero el-
ements of A®". Each connected component C,, (with



1 < n < N)in Cgyen is defined as the set of coordi-
nates Cp, = {(z1,%1), (z2,92), ..., (zk,, Yk, )} for the n-
th component, where k,, = |C},| represents the cardinality,
or the number of elements, in C,,. Finally, we calculate the
spatial entropy H (A*") as follows:

H(AMM = ZP

n=1

)log P(Cy,), (6)

where this entropy is computed using Shannon’s entropy
formula. Here, P(C,,) represents the probability of observ-
ing each connected component C,, within A%". The proba-
bility P(C,,) for each component C), is defined as:

[eX
Sy |Cl

where P(C,,) is calculated by dividing the area of C,, by
the total area of all components in A%". This provides a
normalized measure of spatial focus. The resulting spatial
entropy H(A%") ranges from 0 to 1. A value of 0 indi-
cates that attention is completely focused on a single re-
gion, while a value of 1 suggests that attention is evenly
distributed across the image. This measure thus enables us
to evaluate the dispersion of the model’s attention across
different regions within the image.

P(Cy) = )

B.2. Details of Our Framework

In this section, we provide a detailed description of our
framework, described in Sec. 5 of the main paper.
Binarization of the Attention Map. The attention map is
binarized by setting values above the mean to 1. This ap-
proach effectively highlights the most significant regions of
the attention map.

Gaussian Smoothing. Gaussian smoothing is applied using
a kernel size of k& = 7 and a standard deviation of ¢ =
1.0. These parameters ensure a balance between smoothing
effects and detail preservation.

Convex Hull Algorithm for Bounding Box. To deter-
mine the bounding box in an assembled attention map from
the localization heads, we employ the convex hull algo-
rithm [13]. In cases where multiple convex hulls are present
within the same attention map, we retain only the largest
convex hull. Subsequently, we calculate the smallest tight
bounding box that encloses the retained convex hull and we
use it as the final bounding box.

C. More Analysis on Localization Heads

C.1. Extended Analysis Across More LVLMs

In this section, we extend the analysis of localization
heads in Sec. 4 of the main paper to more LVLMs, in-
cluding InternVL [8], LLaVA [40], Mini-Gemini [34],
ShareGPT4V [7], and Yi-VL [73].

Average Attention Sum in More LVLMs. We extend
Fig. 3 in the main paper to demonstrate that relatively few
attention heads significantly contribute to the model’s text-
image interaction. As shown in Fig. 11, the trend of the aver-
age Sf;lz values remains consistent across different LVLMs.
Selection Frequency and IoU in More LVLMs. Similar
to the above, we extend Fig. 6 in the main paper to cover
additional LVLMs. Fig. 12 presents the selection frequency
and a scatter plot of selection frequency rank versus IoU for
each attention head across various LVLMs. The results con-
firm that our observations hold consistently across different
LVLMs.

C.2. Robustness of Localization Head Selection

In this section, we validate the robustness of our localization
head selection method across different threshold values (7)
and the number of selected heads (V). The experiments be-
low indicate that localization head selection is not sensitive
to the choice of 7 or V.

Threshold 7. Fig. 3 in the main paper presents the average
Simg Vvalues for each attention head, setting the threshold 7
at the point where the maximum curvature is observed. We
select maximum curvature as the threshold to reduce the
need for manual tuning; however, other 7 values can also be
considered. Therefore, we further validate that plausible 7
values can give consistent results with the maximum curva-
ture. To this end, we calculate the selection frequency of the
heads based on different 7 values and compare them with
the results obtained using the maximum curvature. The re-
sults are presented in Fig. 13. We observe that the same lo-
calization heads are consistently selected across different 7
values, indicating that our analysis results are robust to the
choice of 7.

Number of Heads N. In Fig. 6(a) of the main paper, we se-
lect the 10 heads with the lowest H (A*") values and repeat
the process for 1,000 image-text pairs to calculate the selec-
tion frequency. We also investigate the effect of selecting
different numbers of heads (V) on the selection frequency.
We conduct experiments from N = 1 to N = 14 and com-
pare the results with the selection frequency obtained using
N = 10 (default setting). As shown in Fig. 14, we can ob-
tain the same top-3 localization heads consistently across
different N values, suggesting that the selection of localiza-
tion heads is robust to the choice of V.

D. More Experiments
D.1. Comparison with Baseline Models

Most LVLMs, including the LLaVA [40] family, likely en-
code localization knowledge in their pretrained weights,
possibly due to pretraining with bounding box coordinates
or visual instruction prompts [40]. In Tab. 6, we compare
baseline models and our proposed method, revealing the



Table 6. Comparison performance to baseline models

REC (RefCOCOg) DeepSeekVL-1.3B LLaVA-1.5-7B LLaVA-1.5-13B
Baseline 1.5 2.92 5.28
Ours 65.2 82.3 84.3

Table 7. Performance comparison between F-LMM [68] and our
method on the RES task. We note that F-LMM models are trained
on the training set of Referring Expression Segmentation datasets.

RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test
F-LMM (Fine-tuning on RES)
DeepSeek-VL-1.3B 75.0 78.1 69.5 62.8 70.8 56.3 68.2 68.5
Mini-Gemini-2B 75.0 78.6 69.3 63.7 714 533 673 674
DeepSeek-VL-7B  76.1 78.8 72.0 664 732 57.6 70.1 70.4
LLaVA-1.5-7B 752 79.1 719 63.7 71.8 547 67.1 68.1
Ours (Training-free)
DeepSeek-VL-1.3B 56.3 57.0 52.7 51.2 55.5 49.2 523 5538
Mini-Gemini-2B 59.8 60.3 55.5 563 599 51.8 55.1 60.3
DeepSeek-VL-7B  73.9 76.6 70.7 63.1 67.1 56.5 64.0 68.9
LLaVA-1.5-7B 742 76.5 704 62.5 652 56.0 642 68.1

Method

baseline models’ poor localization accuracy, likely due to
their focus on describing objects rather than precise local-
ization. Moreover, the localization head might provide only
indirect support when text generation unfolds in its usual
course. As a result, it becomes difficult for the model to di-
rectly output accurate object or region coordinates required
for visual grounding, unless the information from this head
is explicitly scrutinized. Thus, the localization head’s prac-
tical value can be realized as long as it is integrated with our
proposed method.

D.2. Comparision with F-LMM

We compare our method with F-LMM [68], which also
leverages the attention weights of frozen LVLMs for vi-
sual grounding. The differences between F-LMM and our
method are as follows. First, F-LMM still requires fine-
tuning its mask decoder modules on visual grounding
datasets (i.e., referring expression segmentation datasets).
Second, F-LMM uses all attention heads without consid-
ering the relative importance of each, leaving the decoder
modules to interpret the entire set of attention weights. In
contrast, our approach requires no fine-tuning and directly
utilizes a few selected attention heads that are particularly
useful for localizing objects in the image. Furthermore, our
framework provides a transparent understanding of where
the model focuses through localization heads, which is not
available in F-LMM.

Tab. 7 presents the performance comparison between F-
LMM and our method on the RES task. In smaller LVLMs
(e.g., DeepSeek-VL-1.3B [42] and Mini-Gemini-2B [34]),
F-LMM outperforms our method. However, in relatively
larger LVLMs (e.g., DeepSeek-VL-7B [42] and LLaVA-
1.5-7B [39]), our method demonstrates performance com-
parable to F-LMM, with only a slight gap. This result sug-

Table 8. Ablation study on Gaussian smoothing parameters (o and
). The performance is evaluated using the RefCOCO validation
set (UNC split) with the LLaVA-1.5-13B [39].

o (standard deviation)
0.0 04 038 1.0 1.4 1.8
REC 855 86.8 872 872 86.8 843
RES 743 752 76.1 76.1 752 727

Task

x (kernel size)
1 3 5 7 9 11
REC 855 86.5 86,5 872 872 872
RES 743 752 752 76.1 76.1 76.1

Task

Table 9. Performance comparison with F-LMM [68] on the
PNG [12] benchmark.

PNG (all) Ours F-LMM
DeepSeekVL-7B  66.7 65.7

gests that the localization heads have competitive poten-
tial with the specialized mask decoder modules for visual
grounding tasks, especially in relatively larger LVLMs.

D.3. Gaussian Smoothing Ablation

When assembling the attention map in the localization head
(see Sec. 5 of the main paper), we apply Gaussian smooth-
ing to the attention map to minimize potential random noise.
In this section, we conduct an ablation study on the parame-
ters of Gaussian smoothing to better understand the robust-
ness of our framework across different values of standard
deviation o and kernel size x. For the experiments, LLaVA-
1.5-13B [39] was evaluated using the RefCOCO validation
set (UNC split).

The results are presented in Tab. 8. Regardless of the se-
lected o and x, Gaussian smoothing consistently enhances
performance in almost all cases. The findings highlight that
the framework is robust to varying choices of ¢ and «. Fur-
thermore, even when using the basic attention map of lo-
calization heads without Gaussian smoothing (¢ = 0 or
Kk = 1), the performance remains competitive, with only
a 1.9% drop compared to the best case. This demonstrates
that Gaussian smoothing only serves as an auxiliary post-
processing step for refining the attention map from local-
ization heads.

D.4. Multi-Object Grounding Tasks

Beyond single-object tasks, our pipeline also suggests
promise for multi-object grounding. We utilize spaCy [10]
to extract noun tokens for generating attention maps (see
Fig. 10), obtaining comparable results on the PNG bench-
mark [12], with improvements observed relative to F-LMM
(see Tab. 9). Similarly, we believe this approach holds
promise for extension to other various tasks [17, 38, 49].



E. More Qualitative Results

We present more qualitative results of our framework, in-
cluding the performance of 10 LVLMs [7, 8, 34, 39, 40, 42,
73], with parameter numbers ranging from 1.3B to 13B, on
visual grounding tasks. Fig. 15, Fig. 16, and Fig. 17 present
the qualitative results of our method on the Referring Ex-
pression Comprehension (REC), Referring Expression Seg-
mentation (RES), and Reasoning Segmentation tasks, re-
spectively. The results demonstrate that only a few selected
localization heads are sufficient to accurately localize ob-
jects in the image based on the text query. Our method ef-
fectively localizes objects in various scenarios.

F. Applications
F.1. Real World Application

Fig. 18 illustrates that the localization heads effectively cap-
ture the region or object of interest in images from the
real world, based on the provided expressions. This result
demonstrates the robustness of the localization heads across
various types of data.

F.2. Image Editing

Fig. 19 presents the results of image inpainting performed
by integrating Stable Diffusion XL (SDXL) [47]. The
frozen LVLM generates a segmentation mask correspond-
ing to the expression, and this mask, along with an addi-
tional text prompt, is used as input to the diffusion model to
generate the desired image. These results demonstrate that
the segmentation mask corresponding to the referred text,
output by a small number of localization heads from the
frozen LVLM, can serve as guidance for diffusion models.
This compatibility enables its application in image editing
tasks.

G. Limitations

We propose a simple yet effective framework for training-
free visual grounding, which leverages the localization
heads of LVLMSs. Our framework successfully localizes ob-
jects in images based on text queries without requiring any
fine-tuning and achieves superior performance compared to
existing training-free methods. However, our method still
has some limitations that could be addressed in future work.

First, our work, as illustrated in Fig. 10, reveals the po-
tential for multi-object grounding; however, the establish-
ment of a formalized pipeline or the development of a more
streamlined implementation remains limited. The task of
rendering the identified localization head more practical,
user-friendly, and adaptable across a diverse range of ap-
plications continues to pose a significant challenge. This
presents a compelling avenue for future research.

Figure 10. Multi-object segmentation results from the localization
heads of DeepSeekVL-7B, along with the corresponding raw at-
tention maps.

Second, our method is less suitable for LVLMs or meth-
ods that do not preserve spatial information in images (e.g.,
pooling) [1, 20, 31, 32, 59]. These methods make it chal-
lenging to explicitly obtain image attention maps. To collect
the attention map, a reverse computation is required to de-
termine the order in which image tokens were input during
processing. We leave the application of our framework to
these methods for future exploration.
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map. Our analysis focuses on heads with attention map sums greater than 7, which are selected as targets for selection frequency evaluation.
In the main paper, we select the threshold where the maximum curvature is observed. The top-3 localization heads remain consistent across

Figure 13. Selection frequency of individual heads across different 7 values. 7 represents the threshold for the sum of each head’s attention
different 7 values, demonstrating the robustness of our analysis to variations in 7.
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Figure 14. Selection frequency of individual heads across different /V values. N refers to the number of selected heads based on the lowest
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Expression: Expression: Expression: Expression: Expression: Expression:

pillow behind red train laptop tothe zebraonthe the wonderful left man
kid. middle right.  right of the left thatis not fatherinthe standingin
other laptop. grazing. middle heis  black.

glorious.
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Figure 15. Qualitative results of Referring Expression Comprehension.
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front row zebra whos wood floor at  top left sheep. top left giraffe on the
second from  full body is the bottom of banana. far right.
left.
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Figure 16. Qualitative results of Referring Expression Segmentation.



LLaVA-1.5-13B with only three attention heads (L15 H39, L16 H30, L7 H2)

I !

Expression:

In gymnastics competitions, athletes
perform a variety of acrobatic movements
using different apparatus. Regarding the
picture, what equipment could be utilized
by athletes to accomplish challenging and
impressive movements such as flips and
vaults?

Expression:

What item in the picture could be utilized as
the accessory that people typically wear
around their neck for elegant formal attire?

Expression:
Something used for playing music.

Expression:

During an air show, pilots perform various
aerial maneuvers to entertain the audience.
What spectacle in the picture indicates that a

pilot is performing a spectacular and dazzling

aerial stunt?

Expression:
The frictional part used for igniting.

Expression:

If we were attending a car show and
desired to sit down and observe the
displayed cars, where might we locate a
suitable place to relax?

Expression:

In modern cuisine, food decoration plays
an important role in enhancing the dining
experience. Based on the picture, which
food item is most likely to be used for
decoration purposes?

Expression:

What is the item in this picture that could
be utilized to hit the ball during a game of
tennis?

Expression:

In horse riding, it is crucial to have control
and direction over the horse. What object
in the picture is typically used for guiding
and controlling the movements of a horse?

Expression:

Please identify which object in the picture
could serve as a toy for a dog, as dogs
relish playing with a variety of different
toys that are specifically designed for
biting and chewing.

Figure 17. Qualitative results of Reasoning Segmentation.



LLaVA-1.5-13B with only three attention heads (L15 H39, L16 H30, L7 H2)

4 “ @y 9 ‘A
El

Expression: an Electric-type
Pokémon.

Original Image Expression: a Pokémon Trainer.

Figure 18. Qualitative results of real-world image segmentation. LLaVA-1.5-13B [39] uses only three attention heads (L15 H39, L16 H30,
L7 H2) as localization heads to produce a precise segmentation masks related to the text expressions. The whitened regions in the images
represent the segmentation mask output by the model.



Original Image Expression: guy skating. Prompt: spider man

Figure 19. Qualitative results of generating the desired image through integration with a diffusion model [47]. Given an original image, our
method generates a mask from the LVLM based on the text describing the desired modifications. This mask is then used as guidance for a
diffusion model to perform image editing. Using the segmentation mask obtained through the localization head of the frozen LVLM [39],
it is possible to generate semantic objects that align with the prompt at the specified mask locations.
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