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1. Extended Literature Review
Class-specific feature selection and SNR-based methods have been explored in recent years. Cluster-based pattern discrimi-
nation [7] relies on classifiers to compute the similarity between unknown patterns and clusters, which is crucial for feature
selection, while our approach operates independently of classifiers. [9] proposes a one-vs-all binary classification technique
with traditional feature selectors for class-specific feature selection. SMBA-CSFS[8] employs a sparse model with a two-
step strategy. It builds classifier ensembles and incurs higher computational costs. Authors in [6] leverage fuzzy entropy
and mutual information to evaluate feature relevance and redundancy. These methods lack scalability and solid theoretical
foundations. Our approach stands out using low-rank generative models and SNR, ensuring strong theoretical support for
feature recovery and improved scalability using independent class models. [1] integrates Independent Components Analysis
and SNR for feature selection via a linear transformation of all features for classification. In contrast, our method calculates
SNRs on original features and uses only those selected for classification.

2. Theorems and Proofs
2.1. ELF Parameter Estimation

Theorem 1 The ELF objective is:

(ŴELF , Γ̂ELF ) = argmin
(Γ,W),ΓTΓ=Ir

∥(X− ΓWT )Ψ− 1
2 ∥2F , (1)

without the constraint ΓTΓ = Ir, (1) is minimized w.r.t Γ and W by
Γ̂ = XΨ−1W(WTΨ−1W)−1 and Ŵ = XTΓ(ΓTΓ)−1. (2)
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which is minimized individually for each Wj as WT
j· = (ΓTΓ)−1ΓTX·j , which gives the result. □

Proposition 1 If UDVT = Γ is the SVD of Γ, then Γ1 = U, and W1 = WVD satisfy Γ1W
T
1 = ΓWT along with

ΓT
1 Γ1 = Ir.

Proof. It is easy to verify that ΓT
1 Γ1 = Ir.□

2.2. True Feature Recovery Guarantees

We have considered a model that aims to find a relationship between the observed x ∈ Rd and a hidden set of variables
(latent variables) γ ∈ Rr with r << d and assumes the latent factors and noise variables are independent of each other. It is
as follows:

x = µ+Wγ + ϵ, with E(ϵ) = 0 and var(ϵ) = Ψ. (3)
We have also considered the following assumptions:

(A1) The observations, (xi, i = 1, 2, · · · , n) are independently generated from the LFA model (3) with µ = 0 and ϵ
i.i.d∼

N (0,Ψ).
(A2) Denote Γ = (γ1,γ2, · · · ,γn)

T . Γij are i.i.d random variables with E(Γij) = 0, V ar(Γij) = 1, E(Γ4
ij) < ∞, for all

(i, j) ∈ {1, 2, · · · , n} × {1, 2, · · · , r}.
(A3) There are m true features with indices S = {s1, s2, · · · , sm} and (d − m) noisy features in our data, which satisfy, for

some positive constant γ > 0:
min{SNR∗

i , i ∈ S} ≥ max{SNR∗
i , i ̸∈ S}+ γ. (4)

To prove the following proposition, we first introduce the spiked covariance model[5]:

Definition 1 (Spiked Covariance model [due to [5]]:) Under this model, the data matrix X, can be viewed as XT =

EΛ
1
2Z, where E = [e1, e2, · · · , ed] is a d × d orthogonal matrix, Λ = diag(λ1, λ2, · · · , λd) with λ1 ≥ λ2 ≥ · · · ≥ λd

and Z is a d × n matrix constructed with iid random variables Zij with E(Zij) = 0, E(Z2
ij) = 1 and E(Z4

ij) ≤ ∞. The
population covariance matrix is Σ = EΛET . Here, λk’s are assumed to follow a specific structure, λ1 ≥ λ2 ≥ · · · ≥ λr >
λr+1 = · · · = λd = 1.

For the following section, we assume that limn→∞
d
n = δ. Also there are k population eigenvalues such that λi > 1+

√
δ,

for i ≤ k. The following result is due to [3].

Theorem 2 (due to [3]) For δ ∈ (0, 1), the following holds:

si
a.s.→

{
ρ(λi), if i ≤ k

(1 +
√
δ)2 otherwise,

where ρ(x) = x(1 + δ
x−1 ).

Although consistency could not be proved for δ > 0, [5] proved consistency for δ = 0.

Lemma 1 (due to [5]) If limn→∞
d
n = δ = 0, then,

si
a.s.→

{
λi if i ≤ m

1 otherwise.

Proposition 2 Under the assumptions (A1, A2), if d
n → δ ∈ (0, 1) as n → ∞, and Ψ = σ∗2Id then σ2

ML
a.s.→ σ∗2(1+

√
δ)2.

If δ = 0 then σ2
ML

a.s.→ σ∗2.

Proof. The covariance matrix under the PPCA model, Σ∗ = W∗W∗T + σ∗2Id = E∗L∗E∗T + σ∗2Id can be viewed as a
spiked covariance model.

Let l∗i be the ith diagonal element of L∗. As W∗ ∈ Rd×r is a tall skinny matrix, the first r diagonal elements of L are
greater than 0, and the rest of the diagonal elements are equal to 0.



Therefore, the SVD on Σ∗ provides Σ∗ = E∗Λ∗E∗T , where λ∗
i , the ith element of Λ∗ is:

λ∗
i =

{
l∗i + σ∗2 if i ≤ r

σ∗2 otherwise.
(5)

The ML estimates of σ∗2 from [10] are given below:

σ2
ML =

1

d− r

d∑
j=r+1

sj (6)

where si is the ith largest eigen value of Σ̂.
From (5), we have λ∗

r+1 = λ∗
r+2 = · · · = λ∗

d = σ∗2. Let, Σ∗
0 = Σ∗/σ2 . Therefore the estimated Σ̂0 = Σ̂/σ2. Let λ∗0

i

and s0i be the ith largest eigenvalues of Σ∗
0 and Σ̂0 respectively.

It is easy to verify that the set of principal eigenvectors for Σ∗
0 and Σ∗ are the same and λ∗0

i =
λ∗
i

σ∗2 . A similar logic holds
for Σ̂0 and Σ̂ as well, i.e. s0i = si

σ∗2 .
Therefore, Λ∗

0 = diag(λ∗0
1 , · · · , λ∗0

d ) and λ∗0
1 ≥ λ∗0

2 ≥ · · · ≥ λ∗0
r > λ∗0

r+1 = λ∗0
r+2 = · · · = λ∗0

d = 1

It can be easily verified that X̃n×d = 1
σ∗X follows a spiked covariance model. As, X̃T = Σ

∗ 1
2

0 Zd×n. From the
assumptions (A1,A2), Z can be viewed as a matrix constructed with iid random variables Zij with E(Zij) = 0, E(Z2

ij) = 1

and E(Z4
ij) ≤ ∞.

Therefore, from the Theorem 2 we get, for δ ∈ (0, 1),

s0i
a.s.→ (1 +

√
δ)2,∀i > r.

Now s0i = si/σ
∗2, therefore si

a.s.→ σ∗2(1 +
√
δ)2,∀i > r.

Let us denote sd−r = {sr+1, sr+2, · · · , sd}. It can be easily seen that σ2
ML is a continuous transformation of sd−r, which

can be defined as: σ2
ML = h(sd−r) = (sTd−r1d−r)/(d− r).

Then h(sd−r)
a.s.→ h((σ∗2(1 +

√
δ)2)1d−r) =⇒ σ2

ML
a.s.→ σ∗2(1 +

√
δ)2.

Now if δ → 0, it is evident from the Lemma 1 that σ2
ML

a.s.→ σ∗2. □

Theorem 3 Let d be fixed, and let n → ∞:
(C1) Under assumptions (A1,A2), if Ψ∗ = σ∗2Id, then

ˆSNR
PPCA

i
p→ SNR∗

i ,

for all i ∈ {1, 2, . . . , d}.

(C2) Under the assumption (A1), if Ψ∗ = diag(σ∗2
1 , σ∗2

2 , . . . , σ∗2
d ) and γi

i.i.d∼ N (0, Ir) then
ˆSNR

LFA

i
p→ SNR∗

i ,

for all i ∈ {1, 2, . . . , d}.
Furthermore, under the assumption (A3), the probability that the m features with the highest SNRs are the true features
converges to 1 as n → ∞ for both (C1) and (C2).

Here, ˆSNR
PPCA

and ˆSNR
LFA

denote the estimated SNRs from PPCA and LFA, respectively.
Proof. We have defined SNRs as:

SNRi =

∑r
j=1 W

2
ij

σ2
i

=
(WWT )ii

σ2
i

, i ∈ {1, 2, · · · , d}. (7)

Under the assumptions (A1,A2), for a particular dimension (i), the n observations corresponding to dimension i, denoted as
{Xji, j = 1, 2, · · · , n} are i.i.d single valued random variables with

E(Xji) = 0 (8)

V ar(Xji) =

d∑
k=1

λ∗
kE

∗2
ik (9)



Where Cov(X) = Σ∗ = E∗Λ∗E∗T . Therefore, when δ = 0 (that is, d is fixed and n → ∞), by the law of large numbers,
the corresponding sample variance, which is also the element ith of the principal diagonal of Σ̂ (denoted as Σ̂ii) converges
to Σ∗

ii in probability. i.e.

Σ̂ii
p→ Σ∗

ii (10)

When Ψ∗ = σ∗2Id,

Σ∗
ii = (W∗W∗T )ii + σ∗2 (11)

Σ̂ii = (ŴŴT )ii + σ̂2 (12)

From Proposition 2, we have σ̂2 a.s.→ σ∗2 for δ = 0. Therefore combining this result with (10), from (11), we get:

(ŴŴT )ii
p→ (W∗W∗T )ii (13)

From the definition of SNR (7), we get that the estimated SNR is a continuous transformation of ((ŴŴT )ii, σ̂2), i =

1, 2, · · · , d and provided σ̂2 > 0. Therefore, under condition (C1), we get, ˆSNR
PPCA

i
p→ SNR∗

i .
Under condition (C2), when d is fixed and n → ∞, the ML estimate of the noise covariance matrix, Ψ̂, we get from [4],

is consistent[2], i.e.
σ̂2
i

p→ σ∗2
i , i = 1, 2, · · · , d (14)

Also, the n observations corresponding to dimension i, denoted as {Xji, j = 1, 2, · · · , n} are i.i.d single valued random

variables with Xji
i.i.d∼ N (0,

∑d
k=1 λ

∗
kE

∗2
ik ) Therefore, by the law of large numbers, we get Σ̂ii

p→ Σ∗
ii and using similar

logic from the condition (C1), we get,

(ŴŴT )ii
p→ (W∗W∗T )ii, i = 1, 2, · · · , d (15)

Under the condition (C2), the definition of SNR (7) suggests that the estimated SNR is a continuous transformation of
((ŴŴT )ii, σ̂

2
i ), provided mini∈{1,2,··· ,d} σ̂

2
i > 0. Therefore, combining the results of (14) and (15), we get: ˆSNR

LFA

i
p→

SNR∗
i

Now, we prove the last part of the theorem. Let ˆSNRi be the estimate of true SNR∗
i , for i = 1, 2, · · · , d. Under

condition (C1 and C2), we get, ˆSNRi
p→ SNR∗

i . Therefore, for any ϵ > 0 , there exists n0 such that for any n ≥ n0

P (| ˆSNRi − SNR∗
i | < γ/2) > 1− ϵ.

Therefore, with at least (1− ϵ) probability,

SNR∗
i − γ/2 < ˆSNRi < SNR∗

i + γ/2,∀i

=⇒ min
i∈S

ˆSNRi > min
i∈S

SNR∗
i − γ/2, and max

j ̸∈S
SNR∗

j + γ/2 > max
j ̸∈S

ˆSNRj ,

(by A3) =⇒ min
i∈S

ˆSNRi > min
i∈S

SNR∗
i − γ/2 > max

j /∈S
SNR∗

j + (γ − γ/2) > max
j ̸∈S

ˆSNRj ,

which proves that with probability 1−ϵ, the m features with the highest estimated SNRs are the true features S for n ≥ n0. □
We have used Proposition 3 from [11], to prove the theorem related to the generalized score r− (Theorem 4).

Proposition 3 (due to [11]) If Σ admits a rank-r eigendecomposition of the form:

Σ = LDLT + λIm, (16)

with L ∈ Rm×r, diagonal D = diag(d) ∈ Rr×r with positive entries, and λ > 0, the Mahalanobis distance can be
computed as:

MD(x,µ,Σ) = r(x;µ,L,D, λ), (17)
where

r(x;µ,L,D, λ) = ∥x− µ∥22/λ− ∥u(x)∥22/λ, (18)
with u(x) = diag(

√
d√

d+λ1r
)LT (x− µ), and 1r = (1, 1, · · · , 1)T . The operation

√
d√

d+λ1r
is performed element-wise.



Theorem 4 If
Σ = LDLT +Ψ, (19)

with L ∈ Rm×r, the diagonal matrices D ∈ Rr×r and Ψ ∈ Rm×m with positive entries, the Mahalanobis distance can be
computed as:

MD(x,µ,Σ) = r(Ψ− 1
2x;Ψ− 1

2µ,L′,D′, 1) (20)
where r(x;µ,L,D, λ) is defined in Eq. (18), and L′ and D′ are obtained by SVD on Σ′ = Ψ− 1

2ΣΨ− 1
2 .

Proof. We consider the following transformation:

x′ = Ψ− 1
2x,

µ′ = Ψ− 1
2µ,

Σ′ = (Ψ− 1
2W)(Ψ− 1

2WT ) + Im.

Σ′ looks similar to (16), with λ = 1. Therefore, using the Proposition 3, we get: MD(x′,µ′,Σ′) = r(x′;µ′,L′,D′, 1).
Here, Σ′ = Ψ− 1

2ΣΨ− 1
2 = L′D′L′T . Also,

MD(x,µ,Σ)

= (x− µ)TΣ−1(x− µ)

= (x− µ)T (Ψ− 1
2 )(Ψ

1
2 )Σ−1(Ψ

1
2 )(Ψ− 1

2 )(x− µ)

= (x′ − µ′)T (Ψ− 1
2ΣΨ− 1

2 )−1(x′ − µ′)

= (x′ − µ′)TΣ′−1(x′ − µ′)

= MD(x′,µ′,Σ′)

= r(x′;µ′,L′,D′, 1)

= r(Ψ− 1
2x;Ψ− 1

2µ,L′,D′, 1). □
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