
Appendix: Pippo: High-Resolution Multi-View Humans from a
Single Image

A. DiT Architecture and Training
Architecture. We use a Diffusion Transfomer with 28 DiT
+ ControlMLP blocks (depth) in Pippo operating at 1536
dimension. The DiT blocks account for 1.3B parameters
and ControlMLP blocks for 248M parameters respectively.
We use latent autoencoder which provides 8x spatial down-
sampling, and 4-channel latent space. It contains 101M pa-
rameters. We find the placement of the ControlMLP block
modulation in DiT to be crucial, specifically, being placed
before the scale, shift, and gate is important for the control
signal to work well.
Training Stages. We pre-train (P1@256) our model on 512
A100 GPUs for 1M iterations, with batch size of 24 per
GPU and at 256 ⇥ 256 resolution. 1M on base model, and
700K iterations on 512x512 resolution. During pretraining
Pippo, we use image-only conditioning via DinoV2 [52] us-
ing ViT-L/14 based models to provide weak supervision and
alignment for target generations. We mid-train our model
on Full-body and Head-only datasets at 128 ⇥ 128 resolu-
tion for nearly 100K steps, and post-train our models with
spatially-aligned conditions at 512⇥ 512 and 1024⇥ 1024
for nearly 50K steps. We pre-train, mid-train, and post-train
for roughly 2:1:1 weeks, respectively.
Optimizer and Hyperparameters. We use LR of 1e-4 dur-
ing all stages and AdamW optimizer with beta values set to
[0.9, 0.98] and epsilon to 1e-6. We use linear warmup for
initial 1000 steps starting at 1e-6. We conduct training at
full precision (float32), and run inference at half precision
(bfloat16).

B. Handling Varying Number of Views at In-
ference

As discussed in Sec. 3.2, during training we jointly denoise
a fixed number of views. Specifically, 24 views for mid-
training at 128⇥128 , and 12 or 2 views for post-training at
resolutions 512 ⇥ 512 and 1024 ⇥ 1024 respectively. This
choice is largely motivated to avoid GPU out-of-memory er-
rors during training. However, during inference, we wish to
scale the number of views much further to generate smooth
turnaround videos. This is feasible because we can run in-
ference at half precision (using bfloat16) and do not need
the backprop computation graph to be stored.

We find that simply scaling the number of views (or to-
kens) during inference beyond 2x of the number of views

during training leads to blurry and degraded generations.
We find these degradations to be most significant in regions
unspecified in the input, for example, the back of the head
or ears as shown in Fig. 8. We investigate this issue next,
and introduce Attention Biasing to remedy it.
Attention Biasing. Let X 2 RN⇥d denote the sequence
of tokens denoised jointly, where N, d represent number of
tokens and the token dimension, respectively. In the total
number of tokens in the sequence is proportional to number
of views since the VAE and Patchify jointly compress the
image by 16x in height and width. Within each DiT block,
we compute the Attention(Q,K,V) = AV, where Q,K,V
are query, key, value matrices and A are attention scores
computed via taking a row-wise softmax as follows:
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Where the scaling factor � was proposed to be set to 1/
p
d

by the original work [82] to stabilize the softmax oper-
ation as d increases and avoiding biased (sharp) softmax
distributions. We can quantify the sharpness of the atten-
tion by computing its entropy. Following previous works in
NLP [2, 23, 104], and in vision [35] we define entropy of
attention as:

Ent(Ai) = �
NX

j=1

Ai,j log(Ai,j), (4)

By substituting the equation (3) in equation (4), authors
of prior work [35] meticulously derive that entropy of at-
tention grows logarithmically with number of tokens as fol-
lows: Ent(Ai) / logN . Furthermore, the authors show
that this growth in entropy can be offset during inference by
growing the scaling factor � as follows:
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Where Nt, Ni denote the number of tokens during training
and inference respectively. For more details, please refer to
Sections 3.1 and 3.2 of the original work [35]. Empirically,
we find that having a slightly faster growing � alleviates the
degradation better. Hence, we propose a hyperparameter �
(growth factor) that is tuned between the range [1.0, 2.0] to



control the growth of � as follows:
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We follow the above Equation (6) with our growth factor
hyperparameter �. In Fig. 7, we plot the entropy (Y-axis)
during an inference pass of Pippo across varying number of
views (tokens) being denoised and demonstrate the corre-
sponding growth in entropy. Furthermore, we also show the
attenuation in the entropy under increasing growth factors
(X-axis).

We put generated visuals before and after using the sug-
gested attention biasing in Fig. 8. We put visuals sweeping
over more values of the growth factor in Appendix Fig. 9.
Similar techniques have been explored in LLMs for han-
dling and generating text at longer contexts [56, 83], where
the scaling factor � mentioned above is analogous to the
inverse of the temperature scale.

Additionally, we also found that using a bump function
instead of constant Classifier-free Guidance during gener-
ation leads to fewer artifacts. We discuss this trick further
in Appendix C.

C. Diffusion Model and Inference Settings
We use classifier-free guidance(CFG) [30] during training,
with 20% dropout probability on input reference image. We
use 50 DDIM steps for sampling. During inference, we find
that lower CFG scales between 3 � 5 work better at higher
resolution and generating viewpoints that are closer to in-
put view, this observation is inline with Stable Video Diffu-
sion [5] which proposed to linearly increase CFG scale after
the first frame generation. Inference speed with Pippo de-
pends on the resolution and number of views to be denoised;
we report few combinations in Tab. 8.

# Method (Stage @ Resolution) Views Speed (sec) #

1. Pretrained (P1@256) 1 2.51
2. Pretrained (P1@512) 1 2.59

3. Mid-trained (M2@128) 4 6
4. Mid-trained (M2@128) 48 14

5. Post-trained (P3@512) 4 40
6. Post-trained (P3@512) 48 490

7. Post-trained (P3@1K) 4 185
8. Post-trained (P3@1K) 12 622

Table 8. Inference Speed of Pippo. We show inference speed
without any optimizations (using bfloat16) against varying resolu-
tion and number of views being generated.

Attention Biasing. To compute the entropy (shown in
Fig. 7), we use the first, middle, and last blocks of Pippo;
and aggregate over all attention heads, conditional and un-
conditional inference passes, and DDIM steps. In Fig. 9, we

show visuals for increasing strength of the scaling growth
factor (�) when generating 60 views simultaneously at
512x512 resolution. It is evident that using this attention bi-
asing is quite crucial in making diffusion models generalize
across many views (long context sequences). Growth fac-
tor (�) greater than 1.0 helps mitigate the entropy buildup;
however, increasing � beyond 1.6 leads to over-saturation
artifacts somewhat akin to ones caused by high CFG scale.
Varying Classifier-free Guidance (CFG) using a bump
function. Classifier-free Guidance guidance enables a
trade-off between diversity and realism [30]; with higher
values of CFG resulting in diverse generations (i.e., higher
Inception Score) and lower values of CFG leading to phto-
realistic generations (i.e., higher FID) In our setup, the sin-
gle image to multi-view task involves faithfully preserving
known content while also hallucinating diverse possibilities
of unseen regions. The amount of known content and un-
known content varies for each view that is being generated;
for example, the back of the heads are often unseen; how-
ever, central parts of the face, such as the nose, are generally
specified in the frontal input image. We can use this infor-
mation to rescale the CFG weight for each view separately.
Specifically, we find that using a lower weight for regions
where content copying is required prevents saturation arti-
facts, whereas increasing the CFG scale of unseen regions
leads to more stable and diverse generations. Thus, we in-
crease the CFG linearly starting from the front facing view
at 0� azimuth until 90� azimuth (side-view) where it reaches
its peak value. Then we keep the CFG scale fixed at this
peak value until the azimuth reaches 270� (opposite side-
view), and finally decrease it linearly back to starting value
at azimuth of 360�. This is a bump function and we find
that starting with CFG scale between [7.0, 9.0], and having
a peak CFG scale between [15.0, 19.0] results in reduced ar-
tifacts and diverse generations especially in the unseen re-
gions. A similar trick is also used in image-to-video work
of SVD [5].
Rescaling diffusion timesteps under varying resolution.
Prior works [10, 19] suggest that as resolution increases the
noise scale has to be shifted to ensure same level of corrup-
tion. Based on this Stable Diffusion 3 [19] derive a noise
reweighing scheme by assuming degradation to a constant-
pixel image and ensuring that the uncertainity under degra-
dation for each pixel stays constant. Since SD3 uses con-
ditional flow-matching objective and we train Pippo using
the DDPM [31] objective, we cannot use their reweighing
scheme directly. Here, we provide a derivation for an equiv-
alent reweighing scheme for DDPM objective. We can de-
fine forward process as:

zt =
p
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p
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where ↵t is a monotonically decreasing function of t. The
uncertainty in DDPM is governed by the variance of the



forward process, which depends on ↵t and 1�↵t. Consider
a constant image z0 = c , where c 2 R and 2 Rn. The
forward process in DDPM produces:

zt =
p
↵tc +

p
1� ↵t✏,

where ✏ ⇠ N (0, I). The uncertainty in estimating a
constant-valued image c is, where n are total number of pix-
els in the image:
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.

To map a timestep tn at resolution n to a timestep
tm at resolution m such that the uncertainty �(tn, n) =
�(tm,m), we solve:
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Rearranging, we get the resolution-dependent timestep
mapping for DDPM isolates ↵tm as:
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We use the above reweighing to rescale noise steps when
training models at a higher resolution of 512 ⇥ 512 and
1024 ⇥ 1024 during post-training. In practice, we set m/n
ratio to be slightly lower than the actual value following
SD3 [19].

D. Humans-3B : Filtering and Stats
We run image metadata filtering to keep images whose short
edges are at least 720 pixels and file sizes are at least 120
KB. We run Detectron2 [92] (pose detection) to keep im-
ages containing one clearly detected person (detection score
at least 0.9 and the secondary clear person detection score
is at most 0.4) with heads at least partially visible, and
the long edge of the detected bounding box is at least 300
pixels. We also use a custom person realism classifier to
drop computer-generated or computer-processed imagery.
We provide rough statistics of our curated human-centric
dataset in Fig. 10. We bucket these attributes in bins along
X-axis and plot their respective sizes (normalized between
0� 1) on Y-axis.

E. Visuals Webpage [Link]
Webpage. We upload a supplementary webpage which
contains 360� turnaround videos from our model generated
for Full-body, Head-only and Face-only settings. Addition-
ally, we put visuals where we provide as input a monocu-
lar video (framewise), and generate frames independently at
each timestep. We find Pippo preserves the known details
while hallucinating plausible unseen parts well. We put the
visualization of our spatial anchor and corresponding gen-
erations.

F. Why the name Pippo?

Filippo Brunelleschi.

Our model is named after
Filippo di ser Brunellesco
di Lippo Lapi (1377 – 15
April 1446), widely recog-
nized as Filippo Brunelleschi
and affectionately known as
Pippo by Leon Battista Al-
berti. Brunelleschi was an
Italian architect, designer,
goldsmith, and sculptor. He
pioneered the application of vanishing points in artwork to
achieve accurate perspective vision. Similarly, our model
employs a single 3D spatial anchor to produce consistently
improved images.

G. Visuals from Pretrained Model (P1 )
In Fig. 11, we showcase qualitative visuals related to the
findings in Table 2. It is evident that the model trained with
filtered data and using an image-conditioned objective pro-
duces high-quality human figures.

H. Frequently Asked Questions
Ablation with Missing or Inconsistent spatial anchor.
Spatial Anchor acts as a placement signal for Pippo since
we do not provide it with intrinsics or extrinsics of the in-
put image. In Fig. 14, we run inference on the Head-only
P1@512 model with missing spatial anchor, or when it is in-
consistent with input head pose (rotated downwards at the
floor by 90�). When the spatial anchor is missing, Pippo of-
ten generates an empty image because in our training data it
implies that the subject’s head is not visible in the generated
view. We find that Pippo is robust to anchor rotations; this
suggests Pippo relies on the spatial anchor only for place-
ment control and infers head-pose from the input image.
Can we reconstruct Pippo outputs? Yes, we can recon-
struct Pippo’s generations using a NeRF or GSplat.
Why use spatial-control in post-training only? We find
that skipping pixel-aligned controls in mid-training helps us
to train faster and allows training jointly on a greater num-
ber of views. Additionally, since we mid-train at the low
resolution of 128⇥ 128 , we find that pixel-aligned control
needs to be re-injected during post-training again.
Is Reprojection Error (RE) pairwise, and can it handle
occlusions? Yes, we compute the mean Reprojection Er-
ror over pairs of images. We divide the generated images
randomly into non-overlapping pairs and compute pairwise
RE. We re-project the triangulated 3D points back to each
of the two images to compute the RE. We only use high-
quality correspondence matches by setting a threshold of
> 0.2 in SuperGlue, and reject image pairs that have fewer



than < 5 matches detected. This filtering helps to avoid spu-
rious correspondences in distant and occluded views. We
will release the code for metric.
Trends in overfitting experiments (in Sec. 3.3) may
change under largescale training. Empirically, we found
that the ability to generalize to novel viewpoints of a single
scene under overfitting is correlated with a greater ability to
steer the camera viewpoint and place the subject precisely
after post-training. For example, in Tab. 4, Row 5 we can
see that removing the spatial anchor drops the 3D consis-
tency of the post-trained model the most and is correlated
with the overfitting result in Tab. 1, Row 6. The distribution
of cameras in overfitting remains similar to that of full train-
ing. Thus, we use overfitting as a proxy to compare existing
spatial control modules cheaply.
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Figure 5. High Resolution Multi-view Generation of Unseen subjects. Pippo enables generation of high-resolution 1K images given
only a single image as input (left most in each block, separated with a dashed line). First row LHS shows generation from mobile captured
photo, while the RHS shows unseen studio subject. Second row shows mobile captured face-only generations. Third and fourth row shows
unseen studio subjects. Last two rows demonstrate simultaneous generation of 10 novel views given unseen studio subject.
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Figure 6. Pippo can handle occluded inputs. We show Pippo’s generations given incomplete input images – such as partially or fully
occluded faces, unobserved t-shirt designs on test split of Full-body dataset. We show corresponding ground truth separated with blue
dotted line – it can be seen that Pippo faithfully follows the known content while auto-completing unseen segments.



Figure 7. Entropy vs Growth Factor (�) for varying number of views (tokens) (Appendix B). We present the entropy results (Y-axis)
from our Attention Biasing technique inspired from [35] for varying number of tokens (individual line plots), and across different scaling
growth factor � introduced in Eq. (6) (X-axis). On X-axis, ”No scaling” refers to the default attention formulation [82] and � = 1.0 refers
previous work [35] formulation. Empirically, we find that a slightly higher value of � = 1.4 leads to best visuals.
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Figure 8. Generations under varying strengths of growth factor � (Appendix B). On each row we show the generated views across
vanilla attention [82] (No scaling), prior work [35] and our formulation Eq. (6). It can be seen that growth factor (�) greater than 1.0
is crucial to mitigate the entropy buildup. We show only 10 views per row subsampled evenly from 60 views generated at 512 ⇥ 512
resolution. The model was trained to jointly denoised only 12 views (Ni = 5 ⇤Nt).
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Figure 9. Generations under varying strengths of growth factor � (Appendix B). On each row we show the generated views across
vanilla attention [82] (No scaling), prior work [35] and our formulation Eq. (6). Growth factor (�) greater than 1.0 helps mitigate the
entropy buildup, however increasing � beyond 1.6 leads to oversaturation artifacts (somewhat akin to high CFG scale). We show only 6
views per row subsampled evenly from 60 views generated at 512 ⇥ 512 resolution. The model was trained to jointly denoised only 12
views (Ni = 5 ⇤Nt).



Figure 10. Statistics of our curated Humans-3B dataset. We bucket these attributes in bins along X-axis and plot their respective sizes
normalized between [0, 1] on Y-axis. Filtering with these statistics enable us to retain images with detected-person confidence and image
quality.

No Filtering (P1@128)Human-Centric Filtering (P1@128) Text-Conditioned (P1@128)Pippo (P1@512)

Figure 11. Qualitiative and ablation visuals from pretrained model. Consistent with quantitative evaluation, visual quality of generated
images improves with using human-centric filtering, and image-conditioned models generate samples which are visually closer to the
domain (casual iPhone captures). There is also an obvious boost in quality due to higher resolution.
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Figure 12. Pippo can handle extreme facial expressions. We show generations where reference image comes from unseen Head-only
subjects showing extreme facial expression alongside ground truth. We put similar visuals from our Face-only model on webpage.
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Figure 13. Visualizing Spatial Anchor. Spatial anchor is an oriented 3D point in space, which helps anchor the generation by specifying
a fixed headpose for generations. We put detailed discussion in Sec. 3, ablation using it in Tab. 6 and more visuals on webpage.
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Figure 14. Ablation with Missing or Inconsistent Spatial Anchors. We run inference on the Head-only P1@512 model with missing
spatial anchor, or when it is inconsistent with input head pose rotated downwards towards the floor by 90�.


