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Supplementary Material

1. Evaluation Setup in Details

To better facilitate the reproducibility of our results, in this
paragraph, we provide a more extensive description of the
implementation of our evaluation setup.

1.1. Projection Operators
Pn: In our architecture we employed N projection opera-
tors Pn : Rd → RD for projecting the representations com-
puted by each block of the vision transformer [6] G into a
space that facilitates the operations of spectral reconstruc-
tion similarity. These operators apply a LayerNorm [16]
operation to their input and then process the normalized re-
sults using a sequence of a linear, a GELU [10] and another
linear operation. Finally, a LayerNorm operation is applied
to their output.

P1 and P2: To build the spectral context vector based on
the learnable spectral map C we used the projection opera-
tors P1(·) : R2D → RD and P1(·) : RD → RD that share
the same architecture. In particular, they first process input
features using two linear layers with GELU [10] activations
and then normalize their output using LayerNorm [16].

1.2. Implementation and Training Details
We implement our approach using PyTorch and train it for
35 epochs using the AdamW [19] optimizer. In the first five
epochs we perform a linear warmup of the learning rate (lr)
and increase it from 2.5e − 7 to 5e − 4. Then, from the
5th epoch we apply a per-step cosine decay to ultimately
decrease it to 2.5e− 7 at the last step of the 35th epoch. We
set the latent dimensionality D = 1024 and the masking
radius r = 16 according to the hyperparameter tuning pro-
cedure that we presented in Sec. 4.3 of the main paper. The
vision transformer (ViT) [6] that we employ in our model
of real images G uses a patch size p = 16 and includes
N = 12 transformer [26] blocks with a latent dimensional-
ity d = 768. To compute the 2D Discrete Fourier Transform
we use the Fast Fourier Transform algorithm.

We split each image into K patches of size h = w =
224, while we empirically set the latent dimensionality of
the spectral context attention to Dh = 1536. During train-
ing we employ Ktraining = 4 patches. These patches are
generated as augmented views of the input image, using
random resizing, cropping, rotation, Gaussian blur, Gaus-
sian noise and JPEG compression augmentations. The
training of spectral reconstruction similarity, spectral con-
text vector and spectral context attention is performed on
a single Nvidia L40S 48GB GPU, using mixed-precision
arithmetic, and takes about 50 hours.

Approach Split Gen. # Real # Size

Latent Diff. [2] train 180k 180k 0.1 MP
Latent Diff. [2] val. 20k 20k 0.1 MP

Table 1. Training and validation data. The average image size in
megapixels is presented for each split.

Origin Images # Size
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Glide [1] 1k 0.1 MP
SD1.3 [1] 1k 0.3 MP
SD1.4 [1] 1k 0.3 MP
Flux [15] 1k 0.8 MP
DALLE2 [1] 1k 1.0 MP
SD2 [1] 1k 1.0 MP
SDXL [1] 1k 1.0 MP
SD3 [8] 1k 1.0 MP
GigaGAN [12] 1k 1.0 MP
MJv5 [1] 1k 1.2 MP
MJv6.1 [21] 631 1.2 MP
DALLE3 [1] 1k 1.2 MP
Firefly [1] 1k 4.1 MP
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ImageNet [5] 1k 0.2 MP
COCO [17] 1k 0.3 MP
OpenImages [14] 1k 0.8 MP
FODB [9] 1k 2.8 MP
RAISE-1k [3] 1k 15 MP

Table 2. Test data. The average image size in megapixels is pre-
sented for each generative model and source of real images.

Ultimately, we select the best epoch as the one that mini-
mizes loss on the validation split of our training dataset [2].
However, we noticed that the performance on these valida-
tion samples would saturate very quickly, reaching a near-
optimal level during the first few epochs, without further
indicating whether the model would learn useful patterns.
To make validation setup more challenging, without using
any external data, we applied once our augmentation pol-
icy to the validation data. Then, we used this augmented
validation split for selecting the best epoch. We provide an
overview of our training and validation data in Tab. 1 as well
as our test data in Tab. 2.

2. Runtime Analysis
To evaluate the computational performance of our approach
we analyze its runtime using the proposed spectral context
attention as well as by solely relying on the scaled dot prod-



Figure 1. Runtime comparison between vision transformer’s self-
attention and spectral context attention for different image resolu-
tions. Lower is better. 18 megapixels was the maximum possible
size to scale self-attention due to memory constraints, while spec-
tral context attention did not face similar issues.

Attention 0.1 MP 1 MP 10 MP 1000 MP

Self-Att. 0.68 GB 2.05 GB 17.7 GB N/A
SCA (ours) 0.62 GB 0.68 GB 0.97 GB 38.6 GB

Table 3. Comparison of the required GPU memory to process im-
ages of different size between vision transformer’s self-attention
and spectral context attention. Using spectral context attention we
managed to analyze gigapixel sized images using a single GPU.
MP stands for megapixel and GB for gigabyte. Lower is better.

uct self-attention of the vision transformer [6]. We report
the runtime across images of different resolution in Fig. 1.
As we see, the runtime increases rapidly when relying on
the self-attention of quadratic computational complexity,
while, due to memory constraints, the maximum image res-
olution we could process using an Nvidia L40S 48GB GPU
was limited to 18 megapixels. Instead, employing spectral
context attention enables our approach to scale linearly w.r.t
the size of the image, without being limited by the available
memory. To better highlight the difference in memory re-
quirements, we present in Tab. 3 the required GPU memory
for different image sizes. We see that for a 10 megapixels
image self-attention requires almost 18 gigabytes of mem-
ory. Instead, when using spectral context attention less than
1 gigabyte of memory is required. Finally, using spectral
context attention we managed to analyze with our archi-
tecture images of 1 gigapixel, under a single-GPU setup,
exceeding by a large margin the size of the images pro-
duced by commercial cameras at the time of writing this
manuscript. To eliminate any possible inconsistencies due
to inefficient implementations, in our runtime analysis we
employed the cuda-optimized FlashAttention [4].

3. Feature Space Analysis

To study the effect of our key architectural components
in the feature space we embed the spectral context vector
(SCV) zC , the spectral reconstruction similarity (SRS) val-
ues zλ and the image-level spectral vector zS generated
by spectral context attention (SCA) using t-SNE [25] and
present the results in Fig. 2. We embed these three latent
representations for AI-generated images of different reso-
lution, originating from Stable Diffusion 1.4, Stable Dif-
fusion XL and MidJourney-v5, while, for illustration pur-
poses, limiting our source of real images to COCO. As we
see, the spectral context vector itself provides minimal dis-
criminative capability, highlighting that our approach does
not rely upon the context of the images. On the other hand,
while SRS values provide significant discriminative capa-
bility, there is lots of noise involved, as different SRS values
are useful for image patches with different spectral context.
Finally, using the SCA to combine the most discriminative
of the SRS values according to the spectral context of each
patch produces highly separable image-level embeddings,
verifying our original intuition for building this mechanism.

4. Additional Metrics

To study the calibration of our approach with respect to the
state-of-the-art detectors as well as to facilitate comparison
across popular metrics in the field, we expand the analy-
sis of the main paper by computing the balanced accuracy
on the 0.5 threshold and the average precision metrics. We
report the results across our test set of 5 sources of real
images and 13 generative models in Tab. 4 and Tab. 5 re-
spectively. As we see in the former, our approach, based
on spectral learning, not only provides significant discrim-
inative ability, but is also better calibrated around the com-
mon 0.5 threshold, providing an absolute increase of 2.5%
in balanced accuracy. Moreover, SPAI achieves an absolute
increase of 3.5% in terms of average precision, reinstating
its superior discriminative ability.

5. Ethical Considerations

Introducing an approach for distinguishing AI-generated
content from real one intends to prevent the malicious ex-
ploitation of generative AI. However, any detection method,
will inevitably fail to correctly predict some cases, allowing
malicious actors to exploit such results to either promote
generated content or discredit real one. Yet, we believe
that the improved generalization performance of our ap-
proach across several generative models as well as its supe-
rior robustness against several common attacks, ultimately
decrease the potential of exploitation.



Image Size < 0.5 MPixels 0.5 - 1.0 MPixels > 1.0 MPixels Acc.

Approach Glide SD1.3 SD1.4 Flux DALLE2 SD2 SDXL SD3 GigaGAN MJv5 MJv6.1 DALLE3 Firefly AVG

Dire [28] 38.2 57.7 58.5 46.0 51.5 61.7 47.3 49.6 40.9 43.8 50.4 62.6 51.1 50.7
CNNDet. [27] 52.0 52.2 52.3 49.1 58.0 52.2 56.6 47.5 63.0 50.8 52.6 47.6 55.5 53.0
NPR [24] 79.9 79.9 79.4 29.9 29.9 30.1 29.9 79.9 79.9 31.4 29.9 79.9 29.9 53.1
Fusing [11] 54.1 52.9 53.0 50.5 59.4 52.6 51.4 48.2 62.6 53.2 58.6 48.2 55.9 53.9
FreqDet. [7] 46.9 80.4 80.6 42.6 42.8 46.3 61.8 65.1 60.9 44.0 41.6 46.9 77.2 56.7
UnivFD [20] 50.8 67.9 67.4 45.9 81.0 73.2 65.5 45.0 73.6 50.0 53.8 44.9 88.2 62.1
LGrad [23] 69.3 78.6 78.8 68.9 79.2 54.6 64.3 34.0 80.4 63.3 73.6 37.2 42.1 63.4
GramNet [18] 72.7 78.7 79.1 73.9 80.4 58.5 72.3 32.4 80.4 58.2 80.3 37.0 34.8 64.5
DeFake [22] 76.3 59.5 59.0 79.6 45.2 61.7 51.7 78.3 67.0 62.2 77.1 81.5 44.0 64.8
DMID [2] 52.4 99.3 99.3 82.1 49.5 97.9 96.5 57.9 54.3 98.4 78.1 49.3 57.5 74.8
PatchCr. [29] 69.6 86.6 86.7 79.7 71.7 86.8 89.4 40.2 89.0 72.6 87.9 40.6 72.5 74.9
RINE [13] 88.5 96.6 96.4 84.1 82.0 89.6 95.5 47.0 83.3 90.1 69.2 47.6 67.0 79.8

SPAI (Ours) 81.3 92.2 92.3 71.9 83.4 88.8 90.5 61.3 76.2 87.2 74.3 80.8 90.3 82.3

Table 4. Comparison against state-of-the-art. Average accuracy over 5 sources of real images is reported. Lower values are highlighted in
red, while higher values are highlighted in green. Best overall average value is highlighted in bold, while second best is underlined.

Image Size < 0.5 MPixels 0.5 - 1.0 MPixels > 1.0 MPixels AP

Approach Glide SD1.3 SD1.4 Flux DALLE2 SD2 SDXL SD3 GigaGAN MJv5 MJv6.1 DALLE3 Firefly AVG

Dire [28] 39.5 56.6 57.4 45.2 52.2 70.2 47.8 48.0 41.7 44.1 40.1 59.7 48.6 50.1
CNNDet. [27] 58.0 57.6 59.4 44.1 70.8 57.2 67.0 37.8 75.6 50.6 47.2 35.5 69.2 56.1
FreqDet. [7] 46.3 90.6 90.8 42.6 45.2 46.7 60.5 64.7 63.7 43.6 30.5 47.5 71.7 57.3
NPR [24] 75.4 87.6 72.3 39.3 31.3 35.2 38.3 72.4 84.0 38.2 31.0 97.4 50.4 57.9
Fusing [11] 64.7 63.6 63.0 57.7 77.1 65.6 61.9 42.1 80.7 64.6 67.6 36.6 74.0 63.0
LGrad [23] 80.1 76.8 78.4 71.7 83.1 59.3 69.2 32.6 89.7 67.2 69.3 38.3 44.6 66.2
GramNet [18] 74.9 79.4 79.8 74.6 80.3 65.2 74.0 36.2 80.1 63.5 73.3 48.0 45.5 67.3
UnivFD [20] 62.6 82.1 81.9 43.3 91.4 86.1 79.9 38.6 87.0 57.9 52.9 39.6 95.9 69.2
DeFake [22] 87.0 63.0 62.5 90.8 44.9 66.7 54.7 87.4 73.9 66.6 83.8 93.2 42.9 70.6
PatchCr. [29] 79.7 96.3 96.7 86.8 80.0 96.1 95.3 41.5 97.7 81.1 94.1 39.0 77.5 81.7
DMID [2] 71.5 100.0 100.0 97.2 54.9 99.7 99.7 71.8 70.2 99.9 93.2 45.3 87.7 83.9
RINE [13] 95.5 99.9 99.9 94.0 93.2 96.8 99.4 46.9 93.4 97.0 78.0 48.6 83.1 86.6

SPAI (Ours) 90.9 99.3 99.4 82.0 90.7 96.8 97.2 72.4 84.7 95.1 79.1 88.8 94.9 90.1

Table 5. Comparison against state-of-the-art. Average precision over 5 sources of real images is reported. Lower values are highlighted in
red, while higher values are highlighted in green. Best overall average value is highlighted in bold, while second best is underlined.

6. Qualitative Evaluation

We perform a qualitative evaluation of our approach across
all the considered datasets and present samples for the 13
generative models in Figs. 3 to 15 as well as for the 5
sources of real images in Figs. 16 to 20. As we see, our ap-
proach accurately detects images generated by all the con-
sidered generative approaches, depicting a diverse set of
topics and incorporating different levels of visual fidelity
and aesthetics. At the same time, SPAI accurately classi-
fies real images originating from all the employed sources.
Therefore, employing spectral learning enables our archi-

tecture to not rely on some high-level semantics, but to ef-
fectively detect the subtle inconsistencies introduced by the
generative models, to distinguish between AI-generated and
real imagery.

7. Source Code

To facilitate the reproduction of our results as well as fur-
ther research in the field we make publicly available our
source code, data and trained models on https://mever-
team.github.io/spai.
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Figure 2. t-SNE embeddings for the spectral context vector (SCV) zC , the spectral reconstruction similarity (SRS) values zλ and the
image-level spectral vector zS generated by the spectral context attention (SCA) for AI-generated images from three generative models
and a common source of real images. Each dot corresponds to the embeddings of different image patches in the case of (a) SCV and (b) SRS
and to different images in the case of (c) SCA. Embeddings for AI-generated samples are denoted in green, while for real ones in purple.
The spectral context itself cannot discriminate between real and AI-generated samples (a). While spectral reconstruction similarity values
provide significant discriminative ability, lots of noise is involved (b). Instead, using the spectral context attention to combine the most
discriminative of the SRS values, according to the spectral context of each patch, produces highly separable image-level embeddings (c).
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Figure 7. Accurately detected DALLE2 images. For illustration purposes cropped to a square aspect ratio.

(a) Detection: 90% (b) Detection: 100% (c) Detection: 99% (d) Detection: 87%

Figure 8. Accurately detected DALLE3 images. For illustration purposes cropped to a square aspect ratio.

(a) Detection: 100% (b) Detection: 86% (c) Detection: 100% (d) Detection: 100%

Figure 9. Accurately detected Firefly images. For illustration purposes cropped to a square aspect ratio.

(a) Detection: 100% (b) Detection: 100% (c) Detection: 100% (d) Detection: 100%
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Figure 11. Accurately detected MidJourney-v5 images. For illustration purposes cropped to a square aspect ratio.
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Figure 12. Accurately detected Stable Diffusion 1.3 images. For illustration purposes cropped to a square aspect ratio.
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Figure 15. Accurately detected Stable Diffusion XL images. For illustration purposes cropped to a square aspect ratio.
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Figure 16. Accurately classified real images from COCO. For illustration purposes cropped to a square aspect ratio.
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Figure 17. Accurately classified real images from FODB. For illustration purposes cropped to a square aspect ratio.
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Figure 18. Accurately classified real images from ImageNet. For illustration purposes cropped to a square aspect ratio.



(a) Detection: 4% (b) Detection: 9% (c) Detection: 0% (d) Detection: 0%

Figure 19. Accurately classified real images from Open Images. For illustration purposes cropped to a square aspect ratio.
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Figure 20. Accurately classified real images from RAISE-1k. For illustration purposes cropped to a square aspect ratio.
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