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6. Extended Related Work

We provide an extended related work section on studies em-
ploying multimodal transformers.

Multimodal Learning with Transformers To effectively
process multiple dense visual modalities and enable robust
cross-modal interactions, several multimodal transformer
approaches have been proposed. Some approaches employ
flexible architectures that handle arbitrary input and output
modalities. Notably, Perceiver IO [7] and ImageBind [5] in-
tegrate embeddings from multiple modalities into a shared
representation space, enabling unified processing of diverse
data types within a single framework.

Other works extend masked autoencoders to multimodal
and multitask settings, such as MuliMAE [1], which in-
troduces a masked transformer for joint pretraining across
modalities. Building upon this, models for massively mul-
timodal masked modeling and any-to-any vision tasks have
been introduced [2, 9].

To further unify representations across various tasks,
transformer architectures have been leveraged to integrate
multiple modalities within a single framework. For in-
stance, Xiao et al. [20] focused on combining vision and
language data, while Lu et al. [8] have integrated vision,
language, audio, and action data. Additionally, generative
transformer-based multimodal models have demonstrated
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the ability to perform in-context learning across modal-
ities, improving adaptability and performance in diverse
tasks [19]. Moreover, sequential modeling techniques have
been applied to large multimodal transformers, enabling
scalable training and enhancing performance in multimodal
tasks [3]. Furthermore, UniT [6] introduces a unified trans-
former framework for multimodal multitask learning, effec-
tively processing images, text, and videos across various
tasks within a single model.

Our work proposes FUTURIST, a multimodal visual se-
quence transformer for semantic future prediction. Specifi-
cally, we introduce a transformer-based architecture tailored
for multimodal future prediction, leveraging early multi-
modality fusion through the concatenation of per-modality
tokens to enhance efficiency and cross-modal synergies.
Unlike many existing approaches, our framework is VAE-
free, which simplifies the training pipeline, reduces compu-
tational overhead and enables end-to-end optimization. To
the best of our knowledge, our method is the first to employ
a multimodal transformer for future prediction, effectively
addressing the unique challenges of semantic future predic-
tion with a unified architecture.

7. Additional Results
7.1. Comparison with VISTA

In Table 6, we compare our FUTURIST approach against
the VISTA [4] baseline on both the segmentation and depth
forecasting tasks. We conducted evaluations using a version
fine-tuned on Cityscapes for 10 epochs to address potential
performance issues arising from domain shift. LORA Fine-
tuning required 8 GPUs, with a batch size of 1 per GPU,
utilizing approximately 80 x 8 = 640GB of VRAM. VISTA
finetuned still fell far behind FUTURIST.

7.2. Tokenization: Comparing Our VAE-Free Ap-
proach to VQ-VAE

In Table 7, we compare our approach to variations that
replace the proposed VAE-free tokenization process (de-
scribed in Sec. 3.1) with opensource large-scale pretrained
discrete tokenizers such as VQ-VAE model from DALL-



SEGMENTATION DEPTH
SHORT-TERM MID-TERM  SHORT-TERM MID-TERM
METHOD
ALLT MO?T ALLT MOT 611 ABSREL| d1T ABSREL|
Copry LAST 55.5 527 405 322 90.5 10.780 822 18.345
VISTA FINE-TUNED 463 449 41.0 36.7 844 14877 804 17.991
FUTURIST 739 749 62.7 61.2 96.0 5384 919 9.111

Table 6. Comparison with VISTA on semantic segmentation and depth forecasting. Our FUTURIST model was trained for 3200

epochs. ABSREL is multiplied by 100 for readability.

SEGMENTATION DEPTH

SHORT-TERM  MID-TERM SHORT-TERM MID-TERM
TOKENIZER

ALLT MO?T ALLtT MO?T 6T ABSREL] 61T ABSREL|
ORACLE [18] 78.6  80.8 78.6 80.6 - - - -
ORACLE AFTER DALL-E’S VQ-VAE RECONSTRUCTION 71.5 722 715 722 98.6 2.263 98.6 2.263
ORACLE AFTER LDM’s VQ-VAE RECONSTRUCTION 72,1 719 721 719 973 4.665 97.3 4.665
ORACLE AFTER LDM’S VQ-VAE-FT RECONSTRUCTION ~ 77.1 789 77.1 789 98.7 2.776 98.7 2.776
VQ-VAE FROM DALL-E [14] 65.0 628 544 484 945 6.643 88.3 10.855
VQ-VAE FROM LDM [16] 60.7 557 515 446 918 9.032 849 13.804
VQ-VAE-FT FROM LDM 69.2 689 572 531 90.7 8.912 82.2  14.068
Our VAE-free hierarchical tokenization 729 738 61.6 599 958 5.606 91.5 9.490

Table 7. Tokenization: comparing our VAE-Free approach to VQ-VAE. All models are trained for 800 epochs. ABSREL is multiplied
by 100 for readability. We do not report results for the Oracle baseline in depth forecasting because, unlike segmentation where metrics
are based on ground truth from the dataset, there is no ground truth for depth. Instead, we use the Oracle (DepthAnything [21]) to generate
pseudo-ground truth for comparison. As a result, the Oracle is expected to achieve 100% accuracy and 0 error in depth prediction.

E [14] or LDM [16]. For this comparison, we rendered the
segmentation or depth modalities as RGB images, by ap-
plying the cityscapes colormap for segmentation and repli-
cating values across three channels for depth and fed them
into the VQ-VAE encoder for tokenization. The results
show that using VQ-VAE leads to significantly worse per-
formance compared to our VAE-free approach.

The main reason for this gap is that the reconstruction
process in VQ-VAE significantly degrades the oracle per-
formance, particularly for the segmentation modality. In
fact, segmentation results after VQ-VAE reconstruction are
worse than our predicted segmentation results for short-
term predictions. Moreover, we also fine-tuned LDM’s VQ-
VAE [16] (since DALL-E does not offers training code and
recipe) on segmentation and depth maps, improving both
Oracle reconstruction (ORACLE AFTER LDM’s VQ-VAE-
FT RECONSTRUCTION) and future segmentation predic-
tion (VQ-VAE-FT FROM LDM), though depth prediction
performance slightly declined. Still, our VAE-free method
is more effective and efficient: fewer parameters (465M vs
558M total), faster training (8h vs 22h at 800 epochs), and
lower inference time per sequence (52ms vs 274ms).

The key takeaway is that while VQ-VAE tokenizers are
essential for generative models focused on image or video
generation, they are likely unnecessary for semantic modal-

ities like those considered here. Our VAE-free approach not
only simplifies the training pipeline but also achieves supe-
rior performance

7.3. Impact of Our Multi-Modal Fusion Strategy

In Table 8, we compare our approach to a variation that
keeps tokens from the two modalities separate, instead of
using our multi-modality early fusion strategy, which con-
catenates them along the embedding dimension. When
trained for the same number of epochs, the separable to-
kens approach shows a slight improvement in segmenta-
tion performance, while our method performs better on
most depth metrics. However, our approach is significantly
more efficient, requiring half the training time and GPU
memory. Furthermore, when trained for twice as many
epochs—matching the total compute budget of the sepa-
rable tokens approach—our method outperforms it in six
out of eight metrics. This demonstrates that under the same
compute budget, our approach delivers superior results.

7.4. Additional Results on SYNTHIA-Seq

In our work we focus on Cityscape which is the standard
benchmark for future semantic prediction, used by most
prior approaches. We also conducted experiments on the
SYNTHIA-Seq [17] dataset to further validate our model’s



SEGMENTATION DEPTH TRAINING
SHORT-TERM MID-TERM  SHORT-TERM MID-TERM TIME
APPROACH
ALLT MOt ALLT MOt 611 ABSREL] 61T ABSREL] HOURS]
SEPARATE TOKENS — 800 EPOCHS 733 743 622 60.6 958 5.622 915 9.442 18
OUR MULTI-MODAL FUSION — 800 EPOCHS 729 738 61.6 599 958 5606 91.5 9.490 9
OUR MULTI-MODAL FUSION — 1600 EPOCHS 734 744 62.1 604 959 5444 91.7 9.092 18

Table 8. Impact of our multi-modal token fusion strategy. ABSREL is multiplied by 100 for readability. Training time is computed in

hours.

SEGMENTATION DEPTH
SHORT-TERM MID-TERM  SHORT-TERM MID-TERM
METHOD
MIOU? MIOU? 0117 ABSREL| 61T ABSREL|

Orale 87.9 87.9 76.8  20.195 76.8  20.195
Copy Last 54.3 444 657 27.120 61.8  30.499
Vista Fine-tuned 49.5 40.7 69.5 19949 652 24.670
FUTURIST 63.8 53.2 73.7 23720 694  25.355

Table 9. Comparison on semantic segmentation and depth forecasting at SYNTHIA-Seq Dataset. ABSREL is multiplied by 100 for

readability.

effectiveness. SYNTHIA-Seq provides 5 synthetic urban
driving sequences across diverse scenarios with multiple
environmental variations (Spring, Summer, Fall, Winter,
Rain, Soft-rain, Sunset, Fog, Night, and Dawn). Each sub-
sequence contains approximately 8,000 frames at 5 fps with
resolution of 1280 x 760 pixels. The dataset offers rich an-
notations including 8 camera views, semantic segmentation
for 14 classes (misc, sky, building, road, sidewalk, fence,
vegetation, pole, car, sign, pedestrian, cyclist, lane-marking,
traffic-light), instance segmentation, global camera poses,
depth maps, and calibration parameters. For our experi-
mental setup, we utilized sequences 1, 2, 4, and 5 from the
SYNTHIA-Seq dataset for training, while sequence 6 was
reserved for validation. Given the diverce environmental
variations per sequence, this configuration yielded 42 train-
ing sequences and 8 validation sequences. For evaluation,
we selected 20 keyframes from each sequence in the val-
idation set, resulting in 160 keyframes total for assessing
model performance.

Our evaluation protocol followed both short-term and
mid-term prediction paradigms. For semantic segmentation
assessment, we computed mean Intersection over Union
(mIoU) on a subset of classes present in the keyframes,
specifically: misc, sky, building, road, sidewalk, fence, veg-
etation, pole, car, and lane-marking. While comparing with
many prior approaches as in Table | is challenging due to
lack of publicly available training code for the future seg-
mentation task, we compared FUTURIST (fine-tuned on
SYNTHIA) with VISTA (also fine-tuned) and the Copy-
Last baseline. FUTURIST operates on predictions from

segmentation and depth models (Oracle), both compris-
ing DINOv2 [10] as feature extractor and DPT [15] head,
trained on SYNTHIA, while VISTA applies these same
models to its predicted RGB outputs. Results in Tab. 9 show
FUTURIST significantly outperforms both baselines.

8. Additional Qualitative Results

In Figures 8,9, 10, 11 and 12, we present additional qual-
itative results using FUTURIST for forecasting semantic
segmentation and depth maps over extended time horizons.
These results were generated through autoregressive roll-
outs. Starting with a sequence of four context frames (X;_g
to X}), the model predicts up to 48 future frames, corre-
sponding to 2.88 seconds, with a frame interval of 3.

The examples in Figs. 8 to 1 | demonstrate that the model
effectively preserves temporal coherence, maintaining con-
sistent relationships between static and dynamic elements
over time. The depth maps transition smoothly between
frames, aligning well with changes in the scene. For in-
stance, Figure 8 and Figure 10 show complex scenes with
numerous static and moving objects. Here, the model cap-
tures the ego vehicle’s motion accurately, enabling precise
predictions. In Figure 9, the model successfully predicts the
motion of a car crossing perpendicularly to the ego vehicle,
while Figure 11 highlights the model’s ability to anticipate
the completion of a right turn.

However, as shown in Figure 12, the quality of predic-
tions degrades toward the end of the rollout, particularly
in the final four frames. The car masks become elongated
instead of approaching the ego vehicle as expected. This



degradation likely stems from a mismatch between training
and inference: during training, the model uses teacher forc-
ing with oracle-provided context frames, whereas at infer-
ence, it relies on its own noisier predictions from previous
steps. As discussed in section 9, future work should aim to
address this issue.

Videos of the predicted visual sequences shown in
Figs. 8 to 12 are included as .gif files in the supplementary
material zip file.

9. Limitations and Future Work

While FUTURIST offers a simple and scalable approach
to multi-modal semantic future prediction and demonstrates
clear improvements over prior methods, several areas war-
rant further exploration to unlock its full potential.

Our work primarily focuses on short- and mid-term
future predictions (0.18 seconds and 0.54 seconds, re-
spectively), where our method excels. Although our
model can be applied autoregressively for longer time
horizons—generating mostly coherent predictions that cap-
ture both static and dynamic elements (as shown in sec-
tion 8)—further work is needed to improve robustness in
these scenarios. This could involve addressing the chal-
lenges posed by noisy previous-step predictions (not cur-
rently considered due to teacher-forcing during training) or
introducing stochasticity to better handle the inherent un-
certainty of long-term predictions.

Another promising direction is extending FUTURIST to
instance and panoptic segmentation tasks. Our approach
could be adapted by encoding instance information through
pixel-wise offsets to instance centers [|1—13] rather than
using instance IDs directly. This would allow each pixel
within an instance mask to be represented by its x and y
offsets to the corresponding instance center. These offsets
could be processed as an additional modality with a dedi-
cated embedding layer. During inference, instance masks
could be recovered from these predicted offsets using a
Hough transform-like approach and combined with seman-
tic predictions to generate panoptic segmentation. This ex-
tension would enhance the applicability of our method to
scenarios requiring instance-level understanding.

Currently, our method does not include action condition-
ing, which limits controllability. Incorporating sequences of
control actions as an additional data modality would trans-
form FUTURIST into a world model capable of predicting
outcomes based on specific actions. This could increase its
utility in autonomous driving and open up opportunities for
applications in robotics and embodied Al

Finally, we have not fully explored the scaling behav-
ior of our approach, including model size, training data,
and the number of modalities. However, even with train-
ing limited to Cityscapes, our approach delivers strong re-
sults, highlighting its significant potential for scalability and

broader generalization in future work. Additionally, our
approach relies on pre-trained perception models to pro-
duce semantic modalities (e.g., segmentation and depth)
from RGB images. While this dependency requires ro-
bust models for diverse scenes, the rapid advancements in
foundational perception models and their increasing avail-
ability through open releases ensure that our method re-
mains adaptable and continues to benefit from progress in
the broader computer vision community. Moreover, operat-
ing on semantic modalities rather than RGB images makes
it easier to exploit synthetic data generated by simulators,
as these data do not need to be photorealistic.
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Figure 8. Long-term semantic segmentation and depth predictions for Scene: Munster (23). The model effectively captures temporal
coherence in this complex scene with numerous static and moving objects.
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Figure 9. Long-term semantic segmentation and depth predictions for Scene: Frankfurt (0_[275-304]). Our approach accurately
reflects the motion of static objects due to ego vehicle movement and predicts the motion of a car moving perpendicular to it.
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Figure 10. Long-term semantic segmentation and depth predictions for Scene: Frankfurt (0_[1217-1246]). Our model accurately
preserves the relationships between static and dynamic elements and the motion of the ego vehicle.
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Figure 11. Long-term semantic segmentation and depth predictions for Scene: Lindau (37). This figure demonstrates our model’s

ability to anticipate the completion of a right turn.
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Figure 12. Long-term semantic segmentation and depth predictions for Scene: Munster (160). Despite precise short-term predictions,
car masks become elongated towards the sequence’s end, indicating a need for future adjustments.
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