GA3CE: Unconstrained 3D Gaze Estimation with
Gaze-Aware 3D Context Encoding
Supplementary Material

Yuki Kawana  Shintaro Shiba

Quan Kong Norimasa Kobori

Woven by Toyota

A. egocentrict transformation

A.l. Pose normalization

In this section, we describe the computation of tp.s and
s, which are used to normalize the 3D pose P, in the
egocentric transformation introduced in Sec. 3.2. For 3D
pose estimation, we use the off-the-shelf estimator from
[20], which outputs 3D poses in the smpl+head_30 format,
comprising 30 keypoints representing the body and head.

The head position, tyos, is defined as the average 3D po-
sition of the head keypoints (indices 24 to 29). The scale s,
representing the inverse head size, is computed as the recip-
rocal of the L2 norm between the 24th and 28th keypoints,
which defines the head’s width.

To simplify the representation, we subsample the key-
points using the indices {0, 4-8,12,18-21, 24, 26, 28, 29},
resulting in a reduced set of Npose = 15 keypoints, as defined
in Sec. 3.1.

A.2. Details on rotation alignment

Human vision studies [3, 4, 13] have shown that gaze fix-
ations often concentrate near the center of the visual field,
with distance information playing a critical role in gaze
saliency prediction, particularly from a first-person perspec-
tive. This suggests that both the direction and distance of
objects relative to the subject are key factors in estimating
gaze direction. For example, individuals tend to focus more
on nearby objects than distant ones, even when both lie in
the same direction. Likewise, objects near the visual center
attract more attention than those in the periphery, even if the
latter are physically closer.

Furthermore, learning spatial relationships in a normal-
ized space helps simplify the complex patterns of poses,
object positions, and their interrelations. To this end, we
normalize 2D observations into an egocentric view as the 3D
context representations, as described in Sec. 3.1.

We assume that surveillance or monitoring cameras have
their x-axis aligned with the horizon, the y-axis pointing
downward (though not necessarily perpendicular), and the
z-axis extending forward from the camera center, consistent
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Figure 1. Architecture of the 3D gaze transformer. Enc. layer and
Dec. layer refer to the transformer encoder and decoder layers,
respectively.

Method 2D gaze AUC 1 L2 Dist. | 3D Dist. | 3D MAE |
GFIE [6] v 0.965  0.065 0.311 17.7
GFIE [6] + 3D v 0978  0.062 0.341 16.4
GFIE [6] + ViTGaze [21] v 0965  0.054 0.32 17.9
GFIE [6] + 3D + ViTGaze [21] v 0978  0.054 0.30 16.6
Ours - - - 11.1
Ours + GFM [6] v 0.987  0.067 0.260 10.6

Table 1. Quantitative results on the GFIE dataset [6]. ViTGaze
refers to replacing the baseline GFIE’s 2D gaze-following module
from [21].

with typical egocentric human perspectives. This assumption
generally holds for common 2-DoF fixed cameras mounted
on flat ceilings or walls. Even if the camera is tilted due to
roll (rotation about the z-axis), this can be corrected using
calibrated camera poses or scene cues such as vanishing
points [9, 16].

As a result, any rotation about the camera’s z-axis within
the camera coordinate system, which rotates the x-y plane
of the view, disrupts the consistent alignment of the camera
view that maintains the horizon in the view as horizontal.
Our goal is to normalize 3D context representations to this
aligned view. During egocentric transformation, we apply
rotation that maintain the consistency of the x-y plane w.r.t.
the horizon, by avoiding rotations around the z-axis.

A.3. Axis-angle rotation alignment

An axis-angle representation is defined by a rotation axis
a € S? and a rotation angle n € R. To align the view
direction v € S? with a fixed direction z = [0, 0, 1], the axis
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Figure 2. Illustration of the modifications to the baseline architectures for incorporating 3D context in (a) GFIE [6] and (b) GAFA [14].

Figure 3. Additional qualitative results on the GFIE dataset [6]. Red, green, and blue arrows indicate the ground truth, Ours, and the baseline

GFIE [6], respectively.

Method Input 2D gaze AUC 1 L2 Dist. | 3D Dist. | 3D MAE |
Random 0.469  0.758 1.910 70.3
Center 0456  0.706 1.280 75.9
Rt-Gene [5] H 0.463  0.492 0.483 26.5
Gaze360 [7] H 0.463 0474 0.427 20.6
GazeFollow [19] SD v 0.862  0.196 1.030 44.1
Lian [10] SD v 0.871  0.180 0.813 34.8
Chong [2] SD v 0.891  0.152 0.812 31.9
GFIEpeqq [6] H - - - 27.3
GFIE [6] SD v 0921 0.114 0.365 19.8
GFIE [6]+3D  SD v 0.933  0.094 0.365 17.8
Ours* SD - - - 24.5
Ours SD - - - 25.2
Ours + GFM [6] SD v 0921  0.094 0.314 15.8
Ours + GFM{[6] SD v 0.933  0.094 0.243 14.6

Table 2. Quantitative results on the CAD-120 dataset [8], with
baselines from [6], are presented. Input modalities are denoted as
follows: H = head image only; SD = scene image with depth map.
A check mark indicates that the method requires 2D gaze following;
otherwise, it directly estimates the 3D gaze direction. GFM refers
to the gaze following modules from [6]. GFIEhcq uses only the
head image as input without GFM [6]. Ours* uses a depth map
from the zero-shot estimator [1]. GFM7T uses the same module
trained for GFIE + 3D, as detailed in Supp. B.2.

a and angle 7 are given by:

VXzZ
v <z’ (1
n = arccos(v'z).

a =

To examine how the rotation in Eq. (1) affects rotation
around the z-axis, we convert it to intrinsic Euler angles in x-

y-z order, denoted as {6, ¢, 1 }. The corresponding rotation
matrix is expressed as Reyier = Ry (0) Ry ()R- ().

Using Rodrigues’ rotation formula, the Euler angle 1,
representing the rotation around the z-axis, is computed as:

Y = arctan2(c, + a2(1 — ¢,), aza, (1 — ¢;) — a.sy), (2)

where a = [a,,ay,a.], ¢, = cosn, and s, = sinn.
Unless agay(1—c,) —a.s, equals zero, the rotation defined
by Eq. (1) includes a nonzero component around the z-axis.

A 4. Analytical solution for cyclotorsion rotation

Our objective is to keep ¢ at zero and determine the angles
6 and ¢ that satisfy the constraint on the view direction
v = [vg,0y,0;] relative to z = [0,0, 1], as described in
Eq. (1):

0 cos ¢ 0 sin ¢ Vg
0| = | sinfsing cosf@ —sinfcosg| |vy|. (3)
1 —cosfsing sinf  cosfcos ¢ U,
Then, ¢ is defined as:
¢ = arctan2(—v,, v,) 4
Given ¢, 0 is defined as:

6 = arctan2(vy, v, cos ¢ — vy sin @) (5)



Figure 4. Additional qualitative results on the CAD-120 dataset [8]. Red, green, and blue arrows represent the ground truth, Ours + GFM

[6], and the baseline GFIE [6], respectively.

Figure 5. Additional qualitative results on the GAFA dataset [14]. Red, green, and blue arrows represent the ground truth, Ours, and the
baseline GAFA [14], respectively.

B. Additional implementation details

B.1. Details on positional encoding

We present the formulation and implementation details of
the positional encoding in this section.

Since positional encoding is applied independently to
each point in the normalized body keypoints Péose and nor-
malized object positions P(;bject, we omit Npose and Nopjeer in
the following formulations for simplicity.

The standard positional encoding [23] for the view direc-
tion v’ is defined as:

Yoiew : §7 — RO, Q)

The D? positional encoding Fpose for a point in P,

! pose:
along with the standard positional encodings Y9r. and .

pose
for its direction and distance components, are defined as:

’?pOSC . RB — Rckeypoinl

. dir

’yl(l)j(l)[:ﬂe : 82 — Rckeypoinl (7)
. dist

rys(l)sste : R — Rcks;poinl

where CZr =6, 0%t . — 4 and Cieypoint = CF .+

keypoint — > ~keypoint — keypoint = “keypoint
dist —
Ckeypoint = 10.

Similarly, the D? positional encoding object for a point in

Pyyject> long with the standard positional encodings 7%,

and g, for direction and distance, are defined as:
'?object : RS — Rclatenl
. dir
Yotject + 57 = Ren ®)
: dist
e R R
dir dist — (dir
where Clatent = 128, Clatent = 128, and Clateﬂt — “latent +
Cais 256

latent

B.2. Architecture details of 3D gaze transformer

The architecture is illustrated in Fig. 1. We use the trans-
former module [25] from PyTorch [17]. The object encoder
Sencoder and the gaze decoder fyecoder cONSist of Nepcoder = 3
transformer encoder layers and Ngecoqer = 3 transformer
decoder layers, respectively. The feedforward network has
a dimension of 512, and the multi-head attention [25] uses
2 heads. Other hyperparameters follow the default settings
in [17]. The transformer processes the object feature Egpject
as the source sequence and the subject feature Egypjec; as the
target sequence.

Following [24], we incorporate a gaze-cone-based addi-
tive attention bias B € RNeviewt to the object features Fopject
in the cross-attention between Egypject and Fopjecr- This bias
emphasizes object features aligned with the subject’s view
direction v, where each element of the bias is defined as the
cosine similarity between v and Pobject € Fobject-

For batch processing in the attention layers, the number

of object positions is padded to a maximum NGt > Nopject-



Figure 6. Qualitative ablation results illustrating the effects of pose and object understanding. The red arrow indicates the ground truth, while
the magenta, blue, and green arrows represent predictions from the Appearance, Appearance + Pose, and Appearance + Pose + Object
models, respectively, as described in Tab. 4 of the main paper. (a) and (b) present results from the GFIE dataset [6], while (c) and (d) show
results from the GAFA dataset [14].

Input RGB No GA3CE

No D3 positional All
encoding

No egocentric
transformation

No cyclotorsion
rotation

Figure 7. Qualitative ablation results for gaze-aware 3D context encoding and the proposed components. The top row shows results on the
GFIE [6] dataset, while the bottom row presents results on the GAFA [14] dataset. The red arrow indicates the ground truth, and the other

arrows represent outputs from ablated models. A/l denotes the full model with all proposed components.

Specifically, Njl,, is set to 168 for the GFIE [6] and CAD-
120 [8] datasets, and 278 for the GAFA dataset [14]. Dur-
ing multi-head attention, non-existent object positions are
masked out.

Finally, the residual gaze direction g’ is decoded using a

two-layer MLP with 512 hidden units and ReL.U activation.

B.3. Training details

The batch size is set to 32 for the GFIE dataset [6] and 64
for the GAFA dataset [14] to accommodate the larger dataset
size and improve training efficiency. The network is trained
for 20 epochs on a single A10 GPU using the AdamW opti-
mizer [12] with a learning rate of 0.0014. Cosine scheduling
with a 4-epoch warm-up is employed. Weight decay is set to
0.1, and gradient clipping with an L2-norm threshold of 0.1
is applied.

For the GFIE dataset, noise ¢ is added to the view direc-
tion v as an augmentation to mitigate overfitting. The per-

v+e

turbed view direction vygise 1S computed as vygise = Vel

where € € [—0.5,0.5]%. This results in an average angular

shift of approximately 22 degrees. For the GAFA dataset,
however, this augmentation increased validation error and
was therefore only applied during training on the GFIE
dataset.

B.4. Architecture details of the appearance-based
estimators

The appearance-based estimator in the baseline GFIE [6]
uses a ResNet50 image encoder followed by a gaze predic-
tion head composed of MLPs. It takes an RGB head image
as input and outputs a 3D gaze direction represented as a
unit vector.

In the baseline GAFA [14], the appearance-based estima-
tor corresponds to the Head and Body Network described in
[14]. Tt processes seven temporal frames: the target frame,
along with three future and three past frames. Each frame
includes a full-body RGB image, a 2D head position mask,
and the 2D velocity of the body center. The full-body im-
age and head position mask are encoded separately using
2D convolutional networks, while the body velocity is en-
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Figure 8. Visualization of cases where objects are missing along the gaze direction. Red and green arrows indicate the ground truth and the
prediction, respectively. In (a), objects lie outside the gaze direction. In (b), no objects are present near the gaze direction.

(b)

Figure 9. Visualization of failure cases. Red and green arrows denote the ground truth and the predictions, respectively. In (a), the blue
arrow indicates the temporal direction. In (b), the magenta arrow represents the view direction v.

coded using MLPs. These three features are concatenated
and passed through LSTM layers, which predict the direc-
tions and uncertainties of both the body and head for each
frame, modeled as parameters of a 3D von Mises-Fisher
distribution.

B.5. Gaze-following modules (GFM) [6]

GFM, as referenced in Tabs. 1 and 2, refers to the 2D/3D
gaze-following modules from [6]. The 2D module is a
ResNet50-based convolutional autoencoder that takes as in-
put a multi-channel 2D feature comprising a scene RGB
image, a head position mask, and a field-of-view (FoV) fea-
ture map. It outputs a 2D heatmap indicating the gazed point.
The FoV feature map encodes the pixel-wise directional sim-
ilarity between the estimated gaze direction (obtained from
the head image, as described in Supp. B.4) and each 3D
point backprojected from the depth map using the provided
camera intrinsics. All 3D points are normalized relative to
the known 3D head position.

The 3D gaze-following module takes the 2D heatmap
and estimated gaze direction as input and outputs the 3D
gazed point. This module is non-learnable and deterministic:
it selects the backprojected 3D point corresponding to the
pixel location with the highest similarity in the FoV feature
map near the peak of the 2D heatmap. The final 3D gaze
direction is then computed as the vector from the known

head position to the estimated 3D point.

B.6. Baseline modification for 3D context input

As described in Sec. 4, we modified the baseline methods
GFIE [6] and GAFA [14] to incorporate 3D pose P and
object positions Pypject, aligning their inputs with our ap-
proach for the corresponding datasets. Specifically, the pose
Byose is normalized using the head position tpe,q and head
size s, resulting in Ppose. Similarly, object positions Popject
are normalized by the head position tpjec and scaled so that
their largest extent equals one, yielding pobject.

These modifications are illustrated in Fig. 2, which high-
lights the updated modules in the pipeline while omitting
other baseline components for clarity. Full pipeline details
are available in [6] and [14]. As noted in Sec. 4, we refer to
the modified methods as GFIE + 3D and GAFA + 3D.

GFIE + 3D was trained using the publicly available code
from [6]. In the case of GAFA [14], training the entire
pipeline, including Head and Body Network along with the
gaze estimation module, as shown in Fig. 2 (b), led to over-
fitting without convergence. Improved results were obtained
by training only the gaze estimation module while keeping
the pre-trained weights for Head and Body Network frozen.
For all other training settings, refer to [14].



B.7. Pipeline modification for ablation study on pose
and object

For the Appearance model in Tab. 4 of the main paper, we
use the same pre-trained model with fy;., as the appearance-
based gaze direction estimator from the head image for the
GFIE dataset [6]. For the GAFA dataset [14], we use the
pre-trained gaze direction module from the GAFA baseline,
which also takes the head direction v from the same model
with fiew. Since these appearance-only models lack 3D
context input, GA3CE is not applied. For the Appearance
+ Pose model, which does not use object input, a constant
latent vector is used as Fypje in the input to the decoder
fdecoder to exclude object information.

B.8. Depth map processing

We utilize the zero-shot metric depth estimator [1] for the
RGB-only experiments on the GFIE dataset [6] in Sec. 4.1,
as well as for all evaluations on the GAFA dataset [14] in
Sec. 4.3.

For backprojecting object positions, as discussed in
Sec. 3.1, we complete missing regions in the depth maps
of the GFIE [6] and the CAD-120 [8] datasets using depth
completion [11].

C. Additional results
C.1. Additional results on the GFIE dataset [6]

Additional qualitative results Additional qualitative re-
sults on the GFIE dataset [6] are shown in Fig. 3.

Comparison to the baseline GFIE [6] + the SOTA 2D
gaze-following method We further compare our proposed
approach with the baseline GFIE [6], replacing its 2D gaze-
following module with the latest state-of-the-art method,
ViTGaze [21]. ViTGaze utilizes the large-scale pre-trained
model DINOv2 [15] as its backbone image encoder. DI-
NOv2 has demonstrated strong capabilities in both object-
and scene-level understanding, implicitly learning part-level
instance features for diverse categories, including objects
and body parts. It also provides a foundation for 3D spatial
understanding, such as depth estimation.

It is important to emphasize that the focus of this paper is
not to improve or compete with 2D gaze-following methods.
As discussed in Sec. 1, these methods assume different task
settings, such as requiring the gaze target to be visible when
providing gaze information. In contrast, 3D gaze direction
estimation can provide gaze information even when the target
is not visible.

We first trained the ViTGaze model and replaced GFIE’s
2D gaze-following module during inference. Quantita-
tive evaluation results are shown in Tab. 1. Incorporating
ViTGaze improves 2D gaze-following performance, reduc-
ing the L2 distance between ground truth and gaze points by

17%. Nevertheless, our method still achieves superior results
in 3D gaze direction estimation. This is likely because even
small errors in the detected gaze point on the image can lead
to larger errors in 3D space, especially in the presence of
significant depth variation across pixels.

C.2. Additional results on the CAD-120 dataset [8]

Full quantitative results Quantitative results on the CAD-
120 dataset [8], including comparisons with other baselines
and GFIE [6], are shown in Tab. 2. The proposed method
outperforms the baseline methods.

Additional qualitative results Additional qualitative re-
sults for the CAD-120 dataset [8] are provided in Fig. 4.

C.3. Additional qualitative results on the GAFA
dataset [14]

Additional qualitative results for the GAFA dataset [14] are
shown in Fig. 5.

C.4. Qualitative results for ablation studies

3D Understanding of Pose and Object Fig. 6 shows quali-
tative results for 3D understanding of pose and objects. Blue
arrows indicate that combining appearance and pose im-
proves results compared to using appearance alone, marked
by magenta arrows. In examples (c) and (d), this combi-
nation effectively corrects incorrect estimations, leading to
more accurate predictions. Adding object information, repre-
sented by green arrows in the Appearance + Pose + Object
setting, further refines the results, aligning the estimated
directions more closely with the ground truth.

Gaze-aware 3D context encoding (GA3CE) Fig. 7
presents qualitative results for GA3CE. Disabling GA3CE
(No GA3CE) results in less accurate predictions, as indicated
by the blue arrows across both datasets [6, 14]. Incorporat-
ing all proposed components (ALL) yields the most accurate
results, highlighted by the green arrows.

C.5. Robustness to view direction

To assess robustness to the view direction v as a directional
prior, we add noise to the ground truth direction so that the
resulting v has a 3D MAE matching a target value. When the
3D MAE of v is 20.0, 30.0, and 40.0 on the GFIE dataset [6],
the model’s corresponding 3D MAEs are 11.11, 13.38, and
16.69. On the GAFA dataset [14], 3D MAE:s of 20.0, 29.7,
and 38.6 for v result in corresponding errors of 18.45, 24.67,
and 30.95. The proposed method demonstrates greater ro-
bustness on the GFIE dataset [6], likely due to more frequent
close object interactions that aid accurate gaze prediction.



C.6. Robustness to object absence

We examine how the model performs when objects are either
outside the subject’s gaze direction or largely absent from
the scene. Objects are removed from the images using the
inpainting tool [18], with results shown in Fig. 8. In (a), the
3D MAE is 14.37 (view direction v: 15.38), and in (b), the
3D MAE is 10.28 (view direction v: 27.22). In both cases,
the model estimates reasonable gaze directions by leveraging
pose and view direction as context cues, even when objects
are present but not gazed, or are absent.

D. Failure cases

Typical failure cases are illustrated in Fig. 9. In (a), the
method fails to track gaze shifting from right to left. Since
it does not incorporate temporal information, it struggles in
situations where pose and object cues alone are insufficient
to resolve directional ambiguity. In (b), the model fails to
predict a reasonable gaze direction when the view direction
v contains significant error. As the method relies on v as a
directional prior in the egocentric frame, it cannot recover
from a highly inaccurate view direction.

E. Limitation and future work

While our method demonstrates strong performance within
the trained domains, as shown in Tabs. | and 3, its gener-
alization to unseen domains leaves room for improvement.
This is evident in the results on the CAD-120 dataset Tab. 2,
where Gaze360 [7], despite relying solely on head appear-
ance, outperforms Ours without GFM. Although our method
effectively leverages the view direction v as a prior, it in-
herits limitations when this prior is suboptimal as discussed
in Supp. D, particularly in unseen domains. We attribute
the suboptimal performance on the CAD-120 dataset to this
issue, as seen in the GFIE},..q results in Tab. 2 where the 3D
MAE is significantly higher than that of Gaze360 (Gaze360:
20.6, GFIE}eq.q: 27.3). When the view direction is adjusted
to match the quality of Gaze360 (view direction 3D MAE:
20.2), following a similar procedure to the experiments in
Supp. C.5, our method achieves a 3D MAE of 18.7, outper-
forming Gaze360. This suggests that our method is more
sensitive to the quality of the view direction in unseen do-
mains compared to its robustness in trained domains, as
shown in Supp. C.5. As illustrated by the Ours + GFM re-
sults in Tab. 2, incorporating GFM significantly improves
performance, even with suboptimal view direction estimates.
This highlights a promising direction for improving general-
ization by integrating gaze-following approaches.

Our method currently assumes the subject’s head is visi-
ble to the camera without occlusion to enable 3D localization
using backprojection with a depth map and head bounding
box. Extending this approach to a multi-view setting could
address this limitation, and we plan to explore this in future

work.

Additionally, our pipeline does not yet incorporate object
semantics, which has been shown to be a promising approach
for considering scene context in 2D gaze following [22].
Expanding our method to include semantic cues alongside
object locations is an interesting future direction.

Finally, the current pipeline focuses on a sin-
gle subject per scene, consistent with the previous
works [6, 14].  Future research will explore multi-
person scenarios to capture spatial relationships, en-
abling tasks such as 3D joint attention estimation.
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