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1. Experimental Results

Performance with varying number of frames. To vali-
date that Act-INR is designed to model local motion, we
conducted experiments using a downscaled version of the
Bosphorus video. In these experiments, we increased the
number of frames in each group of pictures (GOP) and mon-
itored the performance. As anticipated, the performance de-
teriorated with a larger number of frames in the GOP as
shown in Fig. 1. This observation aligns with the interpre-
tation that our model maintains strong capacity as long as
the object remains within its surrounding box.

Figure 1. Effect of varying GOP size on performance. The
plot reveals a downward trend in reconstruction performance as
the number of frames in GOP increases. This finding is consistent
with our argument that Act-INR is designed to model local motion.

Performance with varying patch size. In this ablation
study, we investigate the effect of patch size on the local mo-
tion modeling capability of Act-INR. To ensure a fair com-

parison, we fix the parameter size and the number of frames
in GOP while varying the patch size. This setup allows us to
isolate and analyze how changes in patch size influence the
model’s ability to capture local motion dynamics. Neither
excessively large nor excessively small patches allow the
model to fully utilize its capacity, as illustrated in Fig. 2.
For higher spatial resolution and more complex content, ex-
cessively large patches can overwhelm the model, while ex-
cessively small patches increase the likelihood of objects
moving beyond their designated surrounding box. A mod-
erate patch size serves as an optimal sweet spot, balancing
these factors by maintaining manageable spatial resolution
and ensuring that objects remain within the designated box
for effective modeling

Figure 2. Effect of varying patch sizes on performance. The
parameter size is fixed at 1.5 million, and the number of frames
in GOP is kept constant at 20. The results demonstrate that a
moderate-sized window yields optimal performance.

Performance with varying number of parameters. In
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Dataset Bosph Ready Yacht Beauty Jockey Honey Shake Average
Ds-NeRV 35.2/- 27.1/- 29.4/- 34.0/- 32.9/- 39.6/- 35.0/- 33.3/-

H-NeRV Boost 36.1/0.96 30.4/0.91 29.3/0.90 33.8/0.90 35.8/0.95 39.6/0.98 35.9/0.96 34.4/0.94
Ours 37.5/0.98 33.8/0.98 30.8/0.94 33.8/0.91 34.9/0.95 38.4/0.98 34.6/0.96 34.8/0.96

Table 1. Video regression results on UVG dataset in PSNR and MS-SSIM

this ablation study, we examine how performance scales
with the number of parameters. To this end, we progres-
sively increase the feature size from 20 to 60 in increments
of 10. The number of frames in GOP is fixed at 20, and the
resolution is downscaled by a factor of two, consistent with
previous experiments. As shown in Fig. 3, the performance
of our model improves proportionally with the parameter
count, highlighting its scalability.

Figure 3. Effect of number of parameters on performance. The
plot shows an increasing trend in reconstruction performance as
the parameter count grows. This finding demonstrates that Act-
INR scales effectively with parameter size.

Video regression. In Tab. 1, we present a comprehensive
evaluation of video regression on the UVG dataset, detail-
ing all PSNR and MS-SSIM metrics obtained. Although
the Act-INR architecture is specifically designed for video
processing applications, it demonstrates competitive perfor-
mance compared to state-of-the-art neural representations
that are explicitly tailored for video representation tasks.

Failure case. In challenging scenarios such as Jockey, we
observe that transition regions across patches are not well
reconstructed when objects cross patch boundaries. For ex-
ample, as shown in Fig. 4, the horse’s foreleg remains on
the boundary between two patches during its motion. When
a patch boundary splits an object into separate parts, the

Figure 5. Results of training with window blending for the
same Video in Fig. 4. Overlapping windows effectively elimi-
nate blocking artifacts and improve reconstruction quality at patch
transitions.

model may struggle to reconstruct these regions in a visu-
ally plausible manner.

Figure 4. The above illustration highlights a failure case of Act-
INR, specifically showing that patch transitions are particularly
susceptible to reconstruction artifacts.

Remedy for patch transitions. To address artifacts arising
at patch boundaries when objects cross over patch edges,
we propose employing overlapping windows and blending
them using a specific strategy, albeit at an increased com-
putational cost. Drawing on the methodology described in
Mod-SIREN [2], pixels are weighted either linearly or bi-
linearly depending on the number of overlapping patches.
Specifically, bilinear blending is applied when a point is sur-
rounded by four windows, whereas linear blending is used
when the point is encompassed by two windows. This tech-



Video Yacht Ready Jockey Bosph
ActINR-4K 30.1 25.7 24.0 37.2
ActINR-HD 30.3 25.9 24.1 37.3

Table 2. Interpolation performance on 4K and HD resolution

Method Encoding Time Decoding FPS
ActINR 5h19m 59.28

FF-NeRV 6h0m 84.00
HNeRV-Boost 1h53m 13.15

Table 3. Per-video encoding speed, and decoding performance

nique effectively mitigates artifacts at patch boundaries, re-
sulting in smoother reconstructions as shown in Fig. 5.

Resilience to higher resolution. We evaluate the reso-
lution invariance of our interpolation method on four 4K-
resolution videos from the UVG dataset. As presented in
Tab. 2, our method maintains image quality even as the
video resolution increases.

Further motivation for bias-motion interplay. To empha-
size the relationship between biases and motion, we took
video of a vibrating tuning fork, and fit our ActINR to it.
We then median filtered the time series of biases across time
to smoothen the motion artifacts, as shown in Fig. 6. As ev-
ident, the high frequency parts around the fork are replaced
by a near-static prongs, thereby underscoring the relation-
ship between biases and motions.

Encoding and Decoding speeds. Table. 3 tabulates encod-
ing and decoding times for various approaches. Our en-
coding and decoding times are comparable to previous ap-
proaches, with a performance that is similar to FF-NeRV
while decoding 4.5× faster than HNeRV-Boost and operat-
ing in real time, unlike HNeRV-Boost. We achieve speed
up by evaluating all windows in a frame at a time (py-
torch bmm). We also attribute the speed-up to initializing
each group with the preceding group’s weights, reducing
the training epochs needed for convergence.

Further implementation details. We reproduced FF-
NeRV using a 3-million-parameter model for a fair com-
parison, since the original FF-NeRV reported PSNR only
for its 12-million-parameter version. Following the official
repository, we kept all hyperparameters unchanged except
for model size. Our approach consistently employs a 3-
million-parameter model for both interpolation and denois-
ing tasks. However, for inpainting, we used triple the ca-
pacity to handle missing regions more effectively.

Compression. For a fairer comparison, we evaluated the
compression performance of Act-INR with simple pruning
and 8-bit post-quantization. Fig. 7 shows a rate distortion
curve illustrating that Act-INR performs considerably bet-

Without motion filtering With motion filtering

Figure 6. Video of a vibrating tuning fork. Upon applying a me-
dian filter to the biases, the pronounced shaking is significantly
mitigated, as evident in the image on the right.
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Figure 7. Rate-Distortion curve for Bosphorus

ter than JPEG2000, although, slightly worse than Hybrid
NeRV. These analyses demonstrate that ActINR primar-
ily excels in solving inverse problems (interpolation, super
resolution, denoising, and inpainting) while state-of-the-art
techniques like Hybrid NeRV [1] are better suited for com-
pression tasks.
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