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Figure A1. Results on unseen categories. A version of our model
trained only on the horse category also demonstrates robust gener-
alization to the unseen categories such as cow and sheep, despite
being trained solely with a single horse model.

Appendix

A. Generalization to unseen categories

Given the generalization capabilities of our method demon-
strated within a single category, we analyze the generaliza-
tion of a model trained on a single category to unseen cate-
gories. Specifically, we consider a model trained on horses
and evaluate its performance on cow and sheep categories.
We evaluate our approach using the same datasets as for the
horses, PASCAL VOC [1] and Animodel [2], following the
same evaluation protocol, with results reported in Tab. A1.
Furthermore, we provide additional qualitative results on
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Figure A2. Typical failure cases. We illustrate representative fail-
ure cases caused by (a) extreme viewpoints, (b) shapes and poses
far from the training distribution, and (c-d) inaccuracies in the ob-
ject segmentation masks.

the same dataset in Fig. A1. Our method exhibits strong
zero-shot generalization to these categories, outperforming
state-of-the-art approaches on both datasets, despite being
trained exclusively on a single horse model.

B. Limitations

Despite demonstrating surprising generalization, a current
limitation of our method is that any additional synthetic 3D
models added to the training dataset would have to be in
the same canonical space as the training data. Addressing
the challenging problem of aligning the canonical spaces of
multiple 3D models would allows us to train on significantly
larger datasets which could in turn lead to significant gains
in performance for our proposed model. Another limitation
of our method is that it is not specifically trained to han-
dle occlusions caused by other objects. This is a limitation
shared with other methods, such as 3D-Fauna [6, 11]. To
address this, we plan to extend the data generation pipeline
to include synthetic occlusions. Additionally, as the 3D re-
construction problem is often ambiguous for the unseen parts
of objects, our method predicts only the expectation over



Method
PCK (%) Chamfer Distance (cm)

Cow Sheep Real-Sized Normalized

Cow Sheep Cow Sheep

A-CSM [5] 26.3 28.6 6.71 ± 1.81 2.84 ± 0.77 2.35 ± 0.68 2.48 ± 0.70

MagicPony [11] 42.5 41.2 7.22 ± 1.53 3.43 ± 0.73 2.53 ± 0.59 3.00 ± 0.68

Farm3D [2] 40.2 36.1 6.91 ± 1.49 3.79 ± 0.55 2.41 ± 0.54 3.31 ± 0.49

3D-Fauna [6] — — 9.19 ± 2.40 3.51 ± 0.88 3.20 ± 0.80 3.06 ± 0.76

Ours 63.0 64.2 4.74 ± 1.40 2.32 ± 0.78 1.67 ± 0.55 2.03 ± 0.71

Table A1. Evaluation on unseen cow and sheep categories. We evaluate on PASCAL VOS, reporting PCK@0.1 (higher is better ↑), and on
Animodel [2], reporting the bi-directional Chamfer Distance in centimeters (lower is better ↓). Our model, trained solely data from a single
horse model, outperforms state-of-the-art approaches, which were trained on data that included these specific categories.

all possible reconstructions, which can lead to unrealistic
results for the invisible regions. We illustrate our typical
failure cases in Fig. A2.

C. Technical details

Network architecture. We obtain the segmentation mask
M using the Segment Anything method [4]. The feature
extractor Ψ is based on [12] which combines pre-trained DI-
NOv2 [7] and StableDiffusion [8] networks. Training image
features are reduced to a 64-dimensional space using PCA
following [10]. The dual point map predictors ΦQ and ΦP

leverage a convolutional U-Net architecture based on [9],
comprising two blocks each and trained from scratch. We
predict N = 4 layers for layered amodal point maps as more
have little effect on the performance (??), likely due to the
low frequency of multiple self-occlusions in our datasets.
The number of layers can be easily increased should the data
require it. The output resolution of the layered point maps is
set to 160×160.

Training. We use the Adam optimizer [3] for training. Our
model is trained for 100k steps with a batch size of 12. The
learning rate is set to 6×10−4, with a step scheduler applied,
featuring a 30k-step period and a decay factor of 0.5.

Training dataset. The training dataset consists of approxi-
mately 30k rendered images per category. We generate these
images using a single rigged model per animal species. For
cow, sheep, and goat, we use a separate model for each sex
category, incorporating major sex-specific attributes such as
horns. Each model includes up to three different textures and
50 animated actions, such as running, walking, and drink-
ing. We also randomly sample from a pool of 742 HDRI
environmental maps to provide diverse lighting conditions
for the training images. We then randomly sample camera
viewpoints and poses from the animated actions to generate
the training images. ?? showcases the horse model and some
of the generated images used for training.
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