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A. Prior Knowledge Rules and Prompts

We report the knowledge extraction rules used in our
method and the prompts used in the knowledge-driven gen-
eration respectively.

A.1. Prior Knowledge

To simplify the research problem, we utilize only a set of
basic instructions to direct the large language model (LMM)
focus toward the desired multimodal content extraction. For
the general domain, we predefine the extracted knowledge
to include major objects, the quantity of each object, and
their corresponding attributes and styles. Given the strong
reasoning capabilities of LMM in the general domain, it
is not necessary to differentiate between input modalities.
However, to mitigate hallucinations generated by the LMM,
we limit the number of major objects. In our experiments,
extracting between 5 to 7 objects show optimal.

General Domain Rules

Understand the given [input-format] to extract the
following information:
- Identify the top [object-numbers] objects by their
specific names (e.g., ‘man’, ‘woman’ instead of
‘person’).
- Specify the count of each identified object.
- Describe attributes for each object in detail.
- Summarize the style of the [input-format].

In the medical domain, it is necessary to pay attention
to the distinctions between different modalities. This is be-
cause LMM may not inherently comprehend the knowledge
required for out-of-domain (OOD) scenarios, necessitating
clear identification of the modality being processed and the
content to be understood. In our approach, for X-rays, we
instruct the LMM to focus on anatomical structures, clinical
significance, abnormal findings, and report generation.

Medical Domain Rules (X-ray)

This is a chest X-ray image. Please follow these
steps for a comprehensive analysis:
- Describe the main anatomical structures visible in
the image, such as the lungs, heart, and trachea.
- Identify any abnormalities present, such as opaci-
ties, nodules, or effusions, and describe their char-
acteristics.
- Explain the potential clinical significance of any
abnormalities noted.
- Summarize the findings and draft a detailed clini-
cal report based on your observations.

For reports, in addition to the information extracted from
X-rays, we direct the LMM to consider the locations of the
anatomical structures mentioned and any additional charac-
teristic details present in the report.

Medical Domain Rules (Report)

Given the following clinical report, analyze and
identify specific visual details that would corre-
spond to the described findings on a chest X-ray.
Follow these steps:
- Identify the main anatomical structures mentioned
in the report and locate them on a chest X-ray.
- Highlight the abnormalities or specific findings de-
scribed in the report.
- Describe the characteristics (e.g., size, shape, den-
sity) of these abnormalities.
- Relate these characteristics to potential clinical
conditions.
- Summarize your analysis with a list of visual fea-
tures expected in the X-ray.

A.2. Knowledge Extraction with Chain-of-Thought

We employ an LMM with Chain-of-Thought (CoT) [16]
reasoning to extract knowledge according to the aforemen-
tioned rules. This approach helps reduce the computational
strain associated with long-problem reasoning and enhances
the overall accuracy of problem-solving. For the general
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domain, our final instruction prompt is designed as follows:

General Domain Knowledge Extraction

Role: SYSTEM
Content: You are a helpful assistant in un-
derstanding images and texts and you can extract
very important and accurate information from them.

Role: USER
Content:
# Instruction
Your task is to understand the user’s inputs and
extract the related information following the in-
struction:
{ RULES }

{ User Input }
Please process each point step by step.

Role: ASSISTANT
Content: ...

For medical domain, we have:

Medical Domain Knowledge Extraction

Role: SYSTEM
Content: You are a very experienced radiologist.

Role: USER
Content:
# Instruction
The following are some chest x-ray image and
report examples. Your task is to understand the
images and reports, and extract the important
information based on the following questions.
# Examples
Example 1:
Chest X-ray Image: [Image 1].
Clinical report: [Report 1].

Example 2:
Chest X-ray Image: [Image 2].
Clinical report: [Report 2].

# Query
{ RULES }

{ User Input }
Please process each point step by step.

Role: ASSISTANT
Content: ...

Next, we require the LMM to integrate the CoT results
according to the following instructions:

Integrating the CoT Results

Role: USER
Content:
# Instruction
- You have to integrate the previous result into a
structure format.
- Use precise nouns and avoid general terms; each
object should be accurately named.

# Return Format
The output must be in JSON format as follows:
{ return-format }

Role: ASSISTANT
Content: ...

We strictly require the LMM to return structured infor-
mation in the following format:



General Domain Return Format

{
“objects”: [“Obj. 1”, “Obj. 2”, ...],
“numbers”: {
“Obj. 1”: 2,
“Obj. 2”: 1,
...
},
“attributes”: {
“Obj. 1”: “Description of attributes here.”,
...
},
“style”: “Description of style here.”
}

Medical Domain Return Format

# Structured Analysis
1. **Anatomical Structures**:
- Lungs: [Left Upper Lobe: Normal/Abnormal],
[Right Lower Lobe: Normal/Abnormal]
- Heart: [Normal/Abnormal]
- Trachea: [Normal/Abnormal]

2. **Type of Abnormality**:
- Identified Abnormality: [e.g., opacity, nodule,
effusion]
- Characteristics: [e.g., size: 2 cm, shape: round,
border: well-defined/ill-defined, density: high]

3. **Distribution and Location**:
- Side: [Unilateral/Bilateral]
- Location: [Upper/Lower/Middle lobe]
- Extent: [Localized/Diffuse]

4. **Clinical Implication**:
- Possible Diagnosis: [’No Finding’, ’Enlarged
Cardiomediastinum’, ’Cardiomegaly’,
’Lung Opacity’, ’Lung Lesion’, ’Edema’, ’Consol-
idation’,
’Pneumonia’, ’Atelectasis’, ’Pneumothorax’,
’Pleural Effusion’,
’Pleural Other’, ’Fracture’, ’Support Devices’]
- Recommended Action: [Further imaging, clinical
follow-up, etc.]

After extracting the aforementioned structured informa-
tion, we employ LMM to transform these knowledge into
the form of a knowledge graph. To simplify the process, we
represent relationships on the graph using a triplet structure
(nodes and edges):

Building Knowledge Graphs

# Instruction
Your task is to analyze the provided [input-type]
and extract **exactly [numbers-of-relationships]
distinct relationships** to build a knowledge graph.
Each relationship should be structured as (Head,
Relation, Tail), focusing on **clear, direct rela-
tions** (e.g., ”causes,” ”is a part of,” ”describes,”
etc.).
{ User Input }
# Return Format
The output must be in JSON format as follows:

[
{
”head”: ...,
”relation”: ...,
”tail”: ...
},
...
]
Please process each point step by step.

A.3. Knowledge-driven Generation

We employ the knowledge graphs extracted by the afore-
mentioned process as input and employ the LMM to pro-
cess this information to generate meaningful descriptions
of missing modalities. Various modality generators are then
utilized to produce the missing information based on these
descriptions. For missing image, predictions are based on
observable text:

General Domain Image Generation

# Instruction
- Expand the basic sentence to [num-prompts]
high-quality description based on previous analysis
and structured data.
- Each new prompt should emphasize different
object attributes or scene details.
- **Basic Sentence**: [text-content]
[Knowledge Graphs]
# Output Format
Output the prompt format must in JSON:

[
”description 1”,
....,
”description K”
]



Medical Domain Image Generation

# Instruction
Using the following structured analysis, this in-
formation is organized to generate [num-prompts]
meaningful clinical description:

[Knowledge Graphs]

{ User Input }

# Output Format
Output the prompt format must in JSON:

[
”description 1”,
....,
”description K”
]

For missing text, the same method is applied to generate
descriptions of the missing content, which are then refined
by the LMM to produce the required missing text.

A.4. Knowledge-based Ranking Pseudo-code

The pseudo-code for the ranking process is shown in
Alg. 1.

B. Implementation Details

GPUs Details. We conduct all experiments on the PyTorch
2.4.0 [11] platform, running on Ubuntu 20.04 LTS utiliz-
ing 4 GPUs (NVIDIA GeForce RTX 4090 with 24 GB of
memory).
Deploy Efficient Large Multimodal Model. We deploy
the Qwen-VL[13] large model using vLLM [7]. vLLM is
an LLM serving system that achieves (1) near-zero waste
in KV cache memory and (2) flexible sharing of KV cache
within and across requests to further minimize memory us-
age. We deploy versions with 2B1, 7B2, and 72B param-
eters. Specifically, due to hardware constraints, we utilize
the 72B quantized version with Int-8 precision available on
Hugging Face: Qwen2-VL-72B-Instruct-GPTQ-Int83. For
all versions, we maintain an 8K context window length and
support a maximum of four image queries. For each query,
we set the maximum number of tokens to 512 and use a
temperature of 0.1.
Generators Settings. For image reconstruction, we ap-
ply Stable Diffusion XL (SDXL) 1.0 [12] as the restoration

1https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct
2https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
3https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct-GPTQ-Int8

Algorithm 1: Ranking Module. python-style
pseudocode
# fa(·), fc(·), fb(·): the adjacency
matrix, CLIP’s embedding, and
BLIP’s embedding of the given
modality, respectively.
# cosgraph(·, ·), cos(·, ·): Graph
similarity and embedding
similarity.
# C: Missing generation
candidates.
# A: Available modality.

# Quality Scores
QS = []
for c in C: # load a candidate.

# Computing the graph similarity
graph simi = cosgraph(fa(A), fa(c))
# Computing the embedding
similarity by CLIP
clip simi = cos(fc(A), fc(c))
# Computing the embedding
similarity by BLIP
blip simi = cos(fb(A), fb(c))
score = graph simi + clip simi +
blip simi
QS.append(score)

# Ranking.
max c = QS.index(max(QS))
return C[max c]

module for general domains. SDXL 1.0 is an advanced text-
to-image diffusion model that can generate images accord-
ing to a given prompt. Additionally, for the restoration of
chest X-ray modality, we use Cheff [15], a cascaded chest
X-ray latent diffusion model. By default, we generate 5
candidates for the missing modality during the generation
process.

Missing Modality Simulation In our setting, we conduct
the missing rate η = {0.3, 0.5, 0.7} to simulate the miss-
ing modality scenario during training. Specifically, we cal-
culate the number of missing samples in different datasets
under a given missing rate and then randomly mark the text
and image modalities of these samples as missing with a
probability of 0.5. To ensure the reproducibility of the ex-
periment, we perform multiple simulations using the same
set of missing samples. Finally, we retrain the baseline
model, which was initially trained on complete modalities,
using the data with imputed missing modality and report the
performance across various metrics.



C. More Experimental Results
C.1. Table of Quantitative Results

We present additional quantitative analysis results, as
shown in Table 1.

Missing Rate η 0.5

Method F1 AP SS

Baseline (complete) F1: 57.0 | AP: 75.7| SS: -
Baseline (remove missing) 42.1 63.9 -

MPMM [8] (CVPR’23) 42.8 64.2 -
MPLMM [5] (ACL’24) 43.3 65.9 -
MMIN [17] (ACL’21) 34.8 60.1 17.0
DiCMoR [14] (CVPR’23) 37.6 63.8 17.7

Ours (Qwen-VL-2B) 46.6 67.1 21.1
Ours (Qwen-VL-7B) 50.9 70.2 21.5

∆ Complete Baseline -6.1 -5.5 -
∆ SOTA +7.6 +4.3 +3.8

Table 1. Quantitative results (%) on IU X-ray datasets. Bold
denotes the best results and underline denotes the second-best. SS
(%) refers to the average similarity score, which is used to as-
sess the generation quality of imputation-based methods. A higher
score indicates better quality. ‘-’ indicates that the metric is not
applicable. All results are reproduced using the officially released
code.

C.2. Table of Ablation Study

We present complete results of the ablation study in Ta-
ble 2.

C.3. More Modalities Results

The proposed method primarily focuses on image and
text modalities to facilitate the evaluation of the proposed
method, as these modalities are well-supported by the
community and computationally efficient when using large
vision-language models. However, our approach imposes
no constraints on the modality encoders, allowing it to be
easily generalized to other modalities. To validate this, we
conducted experiment on a multimodal sarcasm detection
dataset [2], which includes audio, vision, and text modal-
ities. Using Unified-IO [1] as the backbone and keeping
other configurations unchanged, our method demonstrated
effectiveness even when extended to these modalities, as
shown in Table 3.

D. Visualization Analysis
D.1. Completion Results

We present additional completion results, as shown in
Fig. 1, 2, and 3. In the general domain, our knowledge mod-

eling module emphasizes understanding the quantity of ob-
jects, their attributes, and the contextual environment. The
results in Fig. 1 indicate that our method more closely re-
sembles the original missing modality compared to direct
generation approaches. In the medical domain, incorporat-
ing knowledge of different lesions allows the LMM to com-
prehend the relationships between various regions in chest
X-rays and the content described by the modality. Figs. 2
and 3 demonstrate that our method offers a more reliable
strategy for missing data completion than direct generation.

D.2. Intermediate Results

We present some intermediate results as shown in Figs.
5 and 6.

D.3. Knowledge-based Ranking Results

We present partial results of knowledge-based ranking
as shown in Fig. 4. Here, “available [modality]” indicates
that the modality is visible, and “QS” represents the quality
score of the completed missing modality combined with the
observed modality. The results demonstrate that our pro-
posed knowledge-based ranking module can effectively se-
lect relatively reasonable generated outcomes.

E. Hallucinations
The hallucinations of LMM [3] refer to instances when

an AI model generates content that is factually incorrect,
misleading, or unsubstantiated. In our approach, halluci-
nations primarily stem from the limitations of the training
data. We advocate for a training-free method to achieve
MMC, which has the advantage of being easily deployable
across various domains with minimal input of relevant do-
main knowledge. However, the drawback is that the lack
of task-specific training can result in the model having less
“common sense” compared to models trained on extensive
datasets. As illustrated in Fig. 7, the absence of com-
mon sense in our approach may lead to results that deviate
from expected cognitive outcomes. In recent years, RAG
(Retrieval-Augmented Generation) [6, 9] has been regarded
as an effective technique for mitigating hallucinations in
large models. This technique provides the model with ex-
ternal truths, thereby reducing hallucinations during the rea-
soning process. In future work, we plan to incorporate RAG
to enhance the robustness of our approach.

F. Limitations
F.1. More Modalities

Our method focuses exclusively on image and text
modalities, leaving its performance on other modalities,
such as speech and depth, yet to be explored. The approach
emphasizes the automatic extraction of inter-modal knowl-



MM-IMDb IU X-ray

Missing Rate η 0.3 0.5 0.7 0.3 0.5 0.7

Variants F1 AP SS F1 AP SS F1 AP SS F1 AP SS F1 AP SS F1 AP SS

Baseline (Qwen-VL-7B) 54.7 60.9 33.5 54.9 61.3 32.7 55.2 61.8 32.3 53.6 73.9 22.6 50.9 70.2 21.5 46.3 70.5 19.8

w/o Knowledge Modeling -1.2 -3.3 -7.0 -1.5 -4.1 -8.8 -1.3 -3.6 -8.8 -12.1 -21.6 -10.7 -13.3 26.8 -11.6 -17.5 -29.2 -13.7
+ Random Ranking -1.7 -3.5 -7.2 -1.6 -4.3 -9.0 -1.6 -4.1 -9.9 -13.9 -26.8 -11.4 -14.7 -28.1 -12.4 -19.3 -31.8 -15.0

Random Ranking -0.5 -2.6 -0.6 -0.4 -2.8 -0.7 -0.5 -2.7 -0.6 -2.9 -6.3 -3.8 -3.1 -6.9 -4.3 -3.8 -7.1 -4.7
w/o Knowledge Ranking -0.1 -0.4 -0.2 -0.2 -1.9 -0.4 -0.2 -0.8 -0.1 -1.3 -3.3 -1.5 -2.1 -5.4 -3.6 -1.9 -5.7 -2.1
w/o Semantic Ranking -0.3 -1.4 -0.2 -1.4 -0.2 -0.1 -0.2 -1.0 -0.3 -0.9 -0.4 -0.7 -1.3 -2.3 -1.1 -2.4 -3.3 -1.6

Table 2. The impact of various components. We report the comparison results between different combinations and the baseline.

Ground-truth Ours (GPT-4o) Ours (Qwen-72B) Direct

A open fire hydrant spewing water on a street. A simple plain clear vase with a dead twig and water inside

A person and a dog, floating in in a raft on a river. An outdoor table with a laptop and a glass of beer on it.

A refrigerator with a built in monitor in a kitchen. A black cat laying across a laptop on a table.

A CAT IS SNIFFING A PAIR OF SNEAKERS ON THE FLOOR The couch has a cover over it in the living room.

Ground-truth Ours (GPT-4o) Ours (Qwen-72B) Direct

Figure 1. Visualization analysis. We present the results of image completion on the COCO dataset. The first and fifth columns display the
ground truth images, while the fourth and eighth columns show images generated directly by LMM using the available textual modality.
The remaining columns illustrate the outcomes produced by our method, which employs LMM of varying scales.

Missing Rate η 0.3 0.5

Method F1 AP SS F1 AP SS

Baseline (complete) F1: 62.4 | mAP: 64.7| SS: -
Baseline (remove missing) 57.1 59.3 - 53.8 54.6 -
DiCMoR (CVPR’23) 55.5 57.6 11.7 51.3 52.9 10.2
Ours (Unified-IO 7B) 58.3 60.1 13.3 54.7 55.8 11.4

Table 3. Quantitative results (%) on sarcasm datasets.

edge and the completion of missing modalities through do-

main knowledge. However, this focus on a limited set
of modalities limits its generalizability and adaptability in
real-world applications where multi-modal data often in-
volves various types of sensory inputs. Thus, in the fu-
ture, adaptation to other modalities is possible by defining
a more comprehensive modality knowledge and expanding
the learning framework to accommodate these new modali-
ties. Some promising works [4, 10] show that one modality,
such as image or text, can be connected to any other modal-
ity, paving the way for more inclusive and versatile multi-
modal systems that handle diverse data types with high ef-



Slight cardiomegaly with no failure or pneumonia. The heart is 
slightly large. Pulmonary XXXX are normal. No infiltrates.

GT

Slight cardiomegaly observed with no signs of heart failure or pneumonia. The heart 
appears slightly larger than normal. Pulmonary fields are clear with no abnormal 
infiltrates.

Direct

This image is a chest X-ray, showing the thoracic region, including the lungs, heart, and 
surrounding structures like the ribs and shoulders. The X-ray appears to be taken from 
the frontal (anteroposterior or posteroanterior) view. 

Ours

(GPT-4o)

Clinical findings indicate a slightly enlarged heart without any associated pulmonary 
complications. No further imaging is recommended at this time.Ours

(Qwen-72B)

Figure 2. Visualization analysis. We present the results of completing missing reports based on the X-ray modality from the IU X-ray
dataset.

ficacy.

F.2. More Tasks and Metrics

Additionally, we observe that while our method en-
hances classification performance under a high missing rate
(e.g., 0.7), it paradoxically results in a decrease in the sim-
ilarity scores of the completed modalities. This suggests
that although the model performs well in reconstructing
missing data for classification tasks, the semantic align-
ment and quality of the generated modalities may still re-
quire significant refinement. Addressing these limitations
presents an opportunity to improve the balance between
classification accuracy and modality similarity. Therefore,
there remains substantial potential for further exploration
to develop more robust generation and ranking strategies in
the future. These improvements could include incorporat-
ing advanced similarity-preserving techniques and explor-
ing diverse evaluation metrics to assess the completeness
and coherence of generated data across different tasks.
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Available Text: A open fire hydrant spewing water on a street.

Ground-truth QS: 38.04 QS: 36.70 QS: 36.13 QS: 31.61

Available Text: A refrigerator with a built in monitor in a kitchen.

Ground-truth QS: 36.56 QS: 32.64 QS: 27.77 QS: 21.48

Available Image

No acute cardiopulmonary abnormality. The heart is 
normal size. The mediastinum is unremarkable. There is 
no pleural effusion, pneumothorax, or focal airspace 
disease. The XXXX are unremarkable.

Ground-truth

QS: 36.20

The heart appears normal in size and 
appearance, with no identified 
abnormalities. No specific clinical 
implications or recommended actions are 
necessary based on the findings, as 
there are no acute cardiopulmonary 
abnormalities.

There is no identified 
abnormality in the 
distribution and location of 
any structures, indicating a 
bilateral normal 
appearance.

QS: 34.11

The right lower lobe of 
the lungs is also normal, 
with no acute 
abnormalities 
identified.

QS: 21.26

Figure 4. Visualization of Knowledge-based Ranking. We present the results of knowledge-based ranking.



Figure 5. Intermediate results. We present the intermediate results extracted by our method, referred to as knowledge.



Figure 6. Intermediate results. We present the intermediate results extracted by our method, referred to as knowledge.

Ground-truth Ours (GPT-4o) Ours (Qwen-72B) Direct

A handicapped public toilet with rails and bars.
Housewife and mother Penny Chenery agrees to take over her ailing 
father's Virginia-based Meadow Stables…..

Ground-truth Ours (GPT-4o) Ours (Qwen-72B) Direct

Figure 7. Hallucinations analysis.
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