
ProReflow: Progressive Reflow with Decomposed Velocity

Supplementary Material

1. Velocity Gap in Long-Range Timesteps
As Fig.1 (a) of the main paper shown, to validate the ve-
locity discrepancy in pretrained diffusion models, we con-
ducted experiments using the Stable Diffusion v1.5 model.
The velocity at each timestep is computed as:

vt = 1000× (xt+1 − xt) (1)

where xt represents the latent at timestep t. We sample 100
different prompts and average their velocity matrices to ob-
tain reliable statistics. For each pair of timesteps i and j, we
compute both L2 distance |Vi − Vj |2 and cosine similarity
cos(Vi, Vj) between their velocities in the 4×64×64 latent
space. All experiments use the PNDM scheduler with 1000
inference steps.

2. Add noise to direction or magnitude
To analyze the relative importance of velocity direction
versus magnitude in the flow model, we conduct experi-
ments using the 2-Rectified model with 10 inference steps
on COCO-5K validation set. For each velocity vector v,
we decompose it into direction d and magnitude m compo-
nents: v = m · d, where |d| = 1.

For magnitude noise, we first add Gaussian noise to m
directly. Then, to ensure comparable perturbations for di-
rection noise, we employ binary search to find an appropri-
ate noise scale that yields the same L2 distance from the
original velocity field as the magnitude noise. The direc-
tional noise is added to d and then normalized to maintain
unit length. This controlled noise injection mechanism en-
ables fair comparison between directional and magnitude
perturbations, with results shown in Fig.1 (b) of the main
paper.

Algorithm 1: Velocity Decomposition

Add directional constraint to standard
↪→ MSE loss

def velocity_loss(v_pred, v_target):
Standard MSE loss
l_mse = mse_loss(v_pred, v_target)

Additional directional constraint
l_dir = 1 - cos_similarity(v_pred,

↪→ v_target)

Weight between MSE and directional
↪→ loss

return (1-alpha)*l_mse + alpha*l_dir

Algorithm 2: Progressive ReFlow

K: window numbers [8,4,2]
D: training dataset
t: normalized time in [0,1]

Progressive window refinement
for windows in K:

Training in current stage
while not converged:

Get endpoints of time window
t = sample_time() # t in [0,1]
t1, t2 = get_window_bounds(t)

Compute trajectory endpoints
z1 = add_noise(x0, t1)
z2 = teacher_solve(z1, t1, t2)

Linear interpolation
zt = interpolate(z1, z2, t)
v_target = (z2 - z1)/(t2 - t1)

Update student model
v_pred = student(zt, t)
loss = velocity_loss(v_pred,

↪→ v_target)
update_params()

3. ProReflow Implementary Details
We have presented the pseudocode of ProReflow in Algo-
rithm 1 in the main text. Here we elaborate on its two core
components: Progressive ReFlow, which performs stage-
wise training with decreasing window numbers [8,4,2], and
the velocity decomposition loss which enhances directional
alignment by incorporating cosine similarity alongside the
standard MSE loss. The implementations are detailed in
Algorithm 2 and 1, respectively.

	Velocity Gap in Long-Range Timesteps
	Add noise to direction or magnitude
	ProReflow Implementary Details

