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Figure A1. Some training examples on the generated synthetic dataset and the real SA1B [4] dataset.

A. Additional Implementation Details
Training Data and Pipelines. Our training pipelines are similar with previous studies [2, 7, 14]. In the bootstrapping
stage learns the concept of line segments from the synthetic images using 8 simple primitives as shown in Fig. A1a. With
the bootstrapping model, we move forward to the small-scale Wireframe [3] dataset to learn the line segments in real-world
images, and use this model to achieve the largest-scale training of LSD on the SA-1B [4] dataset, which contains 10 million
real-world image samples as shown in Fig. A1b.

Network Architecture. Our network architecture is simple, follows the best practices of vision transformers for dense
predictions [10]. In detail, given a batch B of RGB images with shape 512× 512, a ViT-Base model is used to extract 1024
tokens for dense prediction of HAT fields and junction heatmaps. DPT head is applied to first transform the 1024 tokens into
high-resolution feature maps with the shape of [B ×N × 256× 256], and then predict the HAT fields and junction heatmaps
using 1 × 1 convolution layers. In our model, there are no neural modules for the verification of line segments, which has
greatly simplified the training and inference pipeline compared to HAWPv3 [14].

Loss Functions. We use the L1 loss function for the regression of the distance field Ad, the angle field Aa and the
residual distance A∆d, denoted by (Ld,La,L∆d). The loss is computed across the foreground points only based on the
mask of foreground pixels. We use binary cross-entropy loss BCE(·, ·) for the regression of the endpoints and use loss
L1 for the regression of the offset field, record as (Lj ,Lo). We set the weights of each loss to (λd, λa, λ∆d, λj , λo) =
(1.0, 1.0, 1.0, 8.0, 0.25), and the total loss of our model is

L = λdLd + λaLa + λ∆dL∆d︸ ︷︷ ︸
HAT Field Learning

+

Junction Learning︷ ︸︸ ︷
λjLj + λoLo . (A1)

The setting of λj and λo follows HAWPv3 [14] to balance the significant magnitude difference of these two loss terms.
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Inference. Our ScaleLSD takes any RGB/grayscale image as input, predicts the HAT fields and junction heatmaps using a
neural network, and decodes the hat fields and junction heatmaps into sparse line segments. In the decoding stage, the junction
heatmaps are first processed by a max-pooling layer with a window size of 3 to suppress the non-maximal predictions, then
we extract the top-K pixels as the coarse junction predictions. When the junction score (i.e., heatmap value) of any pixel is
less than τj ∈ (0, 1), it is discarded. The junction score threshold τj is set to 0.008 for training and pseudo-label generation
and is set to 0.1 for inference and evaluation. For the finally-kept coarse junctions, we apply the learned short-range offset
to obtain final junctions with sub-pixel localization accuracy. With the extracted junction, we decode the line segments by
matching them to the line segment fields (computed by the HAT fields) according to Eq. (2) of our main paper. The distance
threshold τdist is set to 10 pixels, rejecting low-quality predictions in the HAT fields from the final predictions. By matching
the junction to lines, the line segments whose support pixels are larger than τl are kept as the final predictions. Here, we set
τl to 10 for training and pseudo-label generation and is set to 5 for inference and evaluation.

Details on 3D Line Reconstruction. In 3D line reconstruction, we found the threshold of top-K should be increased to
2048 because the buildings usually have more structural information. For the evaluation, we follow the protocol provided
by DTU dataset [1] to compute the Chamfer distance between the predicted line segments (sampled in 128 points per line)
and the groundtruth surface model. The accuracy (ACC-L) and the completeness (COMP-L) are computed to measure the
reconstruction quality. We also add the number of 3D line segments as a reference. We reconstruct the 3D lines using
LiMAP [6] by switching the line segment detectors. The line matching module is their built-in GlueStick [9] implementation
for all detectors.

B. Visualization of VP Estimation

Figure A2. The illustration of vanishing points estimation. Lines belong to the same one vanishing point are labeled with the same color.
Top row shows the results of the Manhattan scenes in the YUD+ [5] dataset and bottom row shows the results of non-Manhattan scenes in
the NYU-VP [11] dataset.

We visualize results of vanishing points estimation by drawing the parallel line segments associated with different van-
ishing points in different colors. Fig. A2 shows that, our method could robustly estimate vanishing points in both Manhattan
and Non-Manhattan scenes. To better show the results, the line segments that are not associated with any vanishing points
are hidden to display.

C. Visualization of Line Matching
Line segments matching is a challenge task due to common situations of changes of view and illumination, occlusions,
background changes, repeatable structures, and textures. Two typical challenging cases for repeatable structures and intensive
illumination changes between the input image pairs are shown in Fig. A3. As shown, because our ScaleLSD significantly
improves detection performance in terms of detection completeness, the applied line segment matcher (i.e., GlueStick [9])
could leverage the global information conveyed in the structural line segment representation for better matching.
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Figure A3. Challenging examples of line segment matching. For each case, from left to right, we first show the detection results for the
two-view input images, and then show the matched line segments. Top: we show the challenge pair of images that have similar structure
and texture as well as change of viewpoint. Bottom: we show the challenge pair of images that have significant illumination changes. Lines
with the same color in the last two images means the matched pairs.



D. Video results of 3D Line Reconstruction
The attached video, scalelsd.mp4, as a supplementary video for Fig. 6 of our main paper, provides a vivid comparison
for 3D line reconstruction.

E. Additional Results
Except for the zero-short performance shown in the paper, we also provide the in-domain results on the Wireframe dataset [3]
and the SA-1B dataset [4] in Tab. A1. We show some results in Fig. A4, Fig. A5, Fig. A6 and Fig. A7 to provide a more
comprehensive and intuitive comparison.

Method Wireframe SA1B-1000
Rep-5 (S) ↑ Loc-5 (S) ↓ Rep-5 (O) ↑ Loc-5 (O) ↓ #Lines/Image Rep-5 (S) ↑ Loc-5 (S) ↓ Rep-5 (O) ↑ Loc-5 (O) ↓ #Lines/Image

LSD [13] 0.383 2.198 0.719 1.028 441 0.432 2.179 0.665 1.153 614
SOLD2 [7] 0.566 2.039 0.805 1.135 116 0.480 2.226 0.688 0.954 97

HAWPv3 [14] 0.751 1.487 0.874 0.841 145 0.519 1.680 0.664 0.905 125
DeepLSD [8] 0.512 2.236 0.707 1.085 210 0.396 2.400 0.601 1.265 181

ScaleLSD@Wireframe(Ours) 0.723 1.694 0.822 0.897 413 0.555 1.856 0.692 0.955 419
ScaleLSD@SA1B(Ours) 0.725 1.466 0.820 0.837 764 0.634 1.535 0.728 0.911 580

Table A1. Evaluation of repeatability scores and localization errors on in-domain datasets. The image resolution are fixed to 512×512 in
evaluation. Numbers with bold-font and underline indicate the best and the second best performance on specific metrics.
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Figure A4. Qualitative results of line segments detection.
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Figure A5. Qualitative results of line segments detection.
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Figure A6. Qualitative results of line segments detection.
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Figure A7. Qualitative results of line segments detection.
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