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This supplementary material includes additional imple-
mentation details and experimental results.

A. Implementation Details
A.1. Depth Co-Alignment

As discussed in Sec. 3.3 in the main paper, let k(i, j) de-
note an indexing function that returns the snippet index k
corresponding to the j-th depthmap of i-th frame. To make
the optimization more robust, we include an additional loss
term in depth space while predicting inverse depth. We fur-
ther scale the loss terms by their respective mean absolute
value per frame to increase the numerical stability. Addi-
tionally, soft constraints on sk, tk are applied:
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with the corresponding mean absolute values per frame
given by
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We found that λ1 = 10−1, λ2 = 101 work well in practice.

A.2. Additional Training and Inference Details

During training, we follow Marigold to use MSE loss on
the latents. We apply gradient accumulation to increase the
effective batch size, to 32. To better mix the samples with
varying snippet lengths, every mini-batch is sampled ran-
domly and can have different snippet lengths. For the initial
depth prediction, we apply the same random Gaussian noise
to all frames. When applying refinement, the same noise is
used to perturb the (encoded) co-aligned depth sequence.
The denoising process then starts from timestep T/2.

A.3. Evaluation Datasets

PointOdyssey [11] contains several sequences that feature
overly simplified toy scenes, as well as some with smoke,
for which depth estimation is ambiguous (cf . Fig. S1). We
exclude these sequences from the test dataset, a detailed list
of selected frames will be provided with the code. For eval-
uation, pixels on windows are excluded due to inconsistent
depth labels.

In ScanNet [1], the RGB images and depth labels in-
clude a thin black border. Following DepthCrafter [4], we
crop the RGB images by removing 8 pixels from the top and
bottom and 12 pixels from the left and right. Similarly, we
crop the depth maps by removing 4 pixels from the top and
bottom and 6 pixels from the left and right.

For DyDToF [8], we exclude depth values beyond 23m,
corresponding to less than 1% of the depth values.

Figure S1. Examples of PointOdyssey toy scenes (left) and scenes
with smoke (right).

A.4. Baseline Methods

We evaluate baseline methods using their recommended de-
fault settings. For DepthCrafter [4], the inference is per-
formed with 25 diffusion steps, using an overlap of 25
frames for videos longer than 110 frames. For Chron-
oDepth [7], inference comprises 10 denoising steps, with
a window size of 10 (referred to as “num-frames” in the
code) and a stride of 9 (referred to as “denoise-steps” in the
code).

For Marigold [5], we retrained an inverse depth version
using the trailing scheduler setting [2, 6]. Under this con-
figuration, 1-step inference with a single model achieves
performance comparable to the original configuration with
multi-step inference and ensembling, so we utilize the for-
mer, more efficient setting.
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B. Additional Experiment Results

B.1. Temporal smoothness evaluation

We further quantitatively evaluate the temporal smooth-
ness using optical-flow-based warping loss (OPW) [9] on
PointOdyssey and ScanNet datasets and report the results in
Tab. S1. The optical flow is estimated using GMFlow [10].

Table S1. Temporal smoothness (OPW↓) comparison. All values
are ×103, lower is better. ∗ denotes catastrophic failures on some
sequences. Numbers in brackets are evaluated on subsets that ex-
clude those cases.

PointOdyssey ScanNet
Marigold 3.52∗ (4.00) 0.48
DepthAnything 3.92∗ (4.21) 0.32
NVDS 3.50∗ (2.97) 0.29
ChronoDepth 8.98∗ (2.99) 0.29
DepthCrafter 7.75∗ (1.30) 0.25
RollingDepth (ours) 1.42∗ (1.63) 0.20

We notice that ChronoDepth and DepthCrafter have
catastrophic failure in some cases of PointOdyssey (cf .
Sec. B.4), leading to large errors, as denoted by ∗. We man-
ually exclude these failure cases. The re-calculated aver-
age OPW is reported in the brackets. Overall, RollingDepth
shows good smoothness, on par with DepthCrafter, while
being more robust than DepthCrafter and ChronoDepth
against occasional failures.

We point out that OPW only evaluates the “smooth-
ness” between adjacent frames while ignoring the long-
term smoothness and geometric consistency. As shown in
Tab. S2, with larger dilation rates, the geometric accuracy
shows a clear improving trend, while the trend of OPW is
unclear. We hypothesize that with a larger dilation rate, geo-
metric accuracy is improved at a cost of minor local smooth-
ness decrease when merging the aligned snippets.

Table S2. Extended table of dilation rate ablation study (Tab. 2).
Values are ×103.

PointOdyssey ScanNet
Dilation rates Abs Rel↓ δ1 ↑ OPW ↓ Abs Rel↓ δ1 ↑ OPW ↓
{1} 16.7 75.5 1.22 12.8 83.2 0.24
{1, 25} 10.2 89.5 2.06 10.6 88.8 0.29
{1, 10, 25} 10.2 89.6 1.98 9.9 90.1 0.29

B.2. Evaluation on DDAD dataset

We further evaluate the model performance on the
DDAD [3] dataset, which is a driving-scene dataset with
sparse depth annotation. We use the 100-frame sequences
on the test set.

As shown in Tab. S3, RollingDepth outperforms other
methods in terms of accuracy and smoothness.

Table S3. Evaluation on DDAD dataset.
Abs Rel↓ δ1 ↑ OPW ↓
×10−2 ×10−2 ×10−3

NVDS 30.8 57.2 0.39
ChronoDepth 34.2 46.9 0.21
DepthCrafter 19.3 74.8 0.28
RollingDepth (ours) 12.8 83.2 0.19

B.3. Inference efficiency

We report the inference efficiency comparison in Tab S4.
The benchmarking is done on the same machine with a sin-
gle RTX3090 GPU. For each method, we run 10 repeated
inferences after a warm-up iteration, with the model loaded
on GPU, and calculated the mean run time and peak mem-
ory footage of each iteration.

Table S4. Inference speed and peak GPU memory usage compar-
ison on a 768×432 video of 250 frames. By increasing the batch
size of processing, RollingDepth† can trade memory for speed.

Time (s) Peak GPU Memory (GB)
NVDS 284 17.6
ChronoDepth 121 15.0
DepthCrafter 284 13.6
RollingDepth (ours) 105 16.2
RollingDepth† (ours) 181 40.1

B.4. Failure cases of video models on PointOdyssey

We provide further examples from the PointOdyssey dataset
where video-based methods struggle. Figure S2 features
scenes with large depth changes, such as hand gestures in
front of the camera or objects entering the near field. These
sudden changes require rapid alterations of the depth range,
both before and after the event. Video models tend to pro-
duce incorrect overall scene layout in such cases, we hy-
pothesize that they ”try too hard” to equalize the depth range
throughout the scene.

B.5. Failure Cases of RollingDepth

While our proposed method handles changing depth range
more robustly than video models, it also has certain limita-
tions. Two examples are shown in Fig. S3. RollingDepth
sometimes misjudges the depth of cloudy skies. Another
source of error is transparent surfaces such as glass win-
dows, where subtle variations of transparency or reflections
may cause the depth to oscillate between the glass and the
scene behind it – a common issue of depth estimators.
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