
Removing Reflections from RAW Photos

Supplementary Material

Contents
Supplemental sections

Section A. Photometric reflection synthesis
A.1. White balancing

Section B. Geometric reflection synthesis
B.1. Fresnel attenuation
B.2. Camera projection
B.3. Defocus blur
B.4. HDR environment sampling
B.5. Double reflection

Section C. Contextual photos
Section D. Data collection

D.1. Mixture search
D.2. Image collection
D.3. Dataset settings

Section E. Reflection removal methods
E.1. Base model architecture
E.2. Upsampler architecture

Section F. Results
F.1. Evaluation methodology
F.2. Base model comparisons
F.3. Upsampler comparisons
F.4. Editing applications

Section G. Adobe Camera RAW DNG SDK
Supplemental figures

Fig. S1. Examples of simulated geometric properties
Fig. S2. Overview of the reflection dataset
Fig. S3. Contextual camera geometry
Fig. S4. Base model architecture
Fig. S5. Upsampler architecture
Fig. S6. Result comparisons with ground truth
Fig. S7. Base model results in-the-wild
Fig. S8. Base model results in-the-wild (continued)
Fig. S9. Results on subtle reflections
Fig. S10. Results for lens flare removal
Fig. S11. Upsampler model comparison
Fig. S14. Upsampler model failures
Fig. S15. Reflection editing for error recovery

Supplemental functions (simulation and DNG SDK)
Func. S1. compute exposure()

Func. S2. white balance()

Func. S3. extract xyz images()

Func. S4. cam to rgb()

Func. S5. stage3 black level()

Func. S6. highlight recovery()

Func. S7. find xyz to cam()

Func. S8. xyz to cam awb()

Func. S9 - S17. Additional ACR functions

A. Photometric reflection synthesis
As part of our photometric reflection synthesis pipeline,
Func. 1, we compute a new exposure and white balance for
the simulated mixture image, m, using Func. S1 and Func.
S2, respectively. These functions follow ACR color process-
ing, and use methods in the Adobe DNG SDK, Sec. G. The
ACR color processing that produces XYZ source images is
specified in Func. S3 and discussed in Sec. G.

A.1. White balancing
To compute a new white balance within Func. S2, we use
the C5 white balancer of Afifi et al. [2]. C5 white balances
an input image by using an additional n sample images that
were captured from the same camera. We therefore cache n
samples for each camera in the dataset of RAW images, and
remove all images for which there were not n = 7 samples
from the camera (7 is the C5 default).

White balancing with C5 requires that simulated mixtures
m = t+r in XYZ be transformed into camera color space. In
Func. S2 we use the XYZ to CAM transform associated with
the RAW source image of t to simulate a camera from which
the mixture was captured, since t typically dominates r in
the sum due to attenuation by the glass (see Sec. B). The
white balancer produces a new white point WhiteCAM awb

in camera color space. We then follow ACR color process-
ing of white points in camera color space by transforming
WhiteCAM awb into XY coordinates and computing a new
XYZ to CAM transform using DNG SDK Func. S7. This new
transform into XYZ is then composed with Bradford adap-
tation (Func. S2 line 5) to construct a single, linear white
balancing transform that operates on images in XYZ space
(line 6).

Over a large scale dataset, white balancer failures in-

Function S1 Compute the exposure of a simulated mixture m.
Input: A simulated mixture m and its associated component images (t, r)
Output: An exposure value e

1: Compute the WhiteXY of t. {SDK Func. S9}
2: Compute transform XYZ to sRGB using WhiteXY. {SDK Func. S11}
3: Convert m to linear sRGB using XYZ to sRGB.
4: if no pixels in t or r are saturated then
5: Compute the mean pixel value µ of m
6: Compute the target value τ = sRGB to linear sRGB(0.4). {SDK

Func. S17}
7: return e = τ/µ {Expose the mean to sRGB 0.4.}
8: else
9: Convert t and r to linear sRGB using XYZ to sRGB.

10: Compute tmax = max(t) and rmax = max(r).
11: return e = 1/min(tmax, rmax)
12: end if

Function S2 Compute the white balance transform.
Input: A re-exposed XYZ mixture, e ·m, and the transmission t
Output: XYZ to XYZ awb

1: Compute the XYZ to CAM using the WhiteXY of t. {SDK Func. S7}
2: Transform e ·m into camera color space using XYZ to CAM.
3: Compute a new white point WhiteCAM awb in camera color space.

{This work uses [2]}
4: Compute XYZ to CAM awb and WhiteXY awb from WhiteCAM awb.

{Func. S10+S7 or S8}
5: Compute XYZ to XYZ D50 from WhiteXY awb. {SDK Func. S13}
6: return XYZ to XYZ D50 · inv(XYZ to CAM awb) · XYZ to CAM.

evitably occur. These are handled by culling m if the new
white point is extremely different from the as-shot WhiteXY
of t. Extreme changes to the true white point are not com-
mon because reflections that are of practical interest are ei-
ther transparent, localized, or both. The new XY white point
(WhiteXY awb) can be further restricted to lie on the Planck-
ian locus, and we found this to be sufficient for our source
images, which were captured under typical illuminants. Pro-
jection from WhiteCAM awb to WhiteXY awb can be done
using ACR Func. S10 and S7, or Func. S8 with the Planck-
ian constraint, as noted in Func. S2, line 4.

In summary, the white balance computed in Func. S2 is
a linear transform, which we denote XYZ to XYZ awb, that
composes three ACR color transforms: 1) it maps images
into the camera color space of t, 2) it maps back to XYZ un-
der a new white point, and 3) it applies Bradford adaptation
to the D50 illuminant. In the simulation (Func. 1) this trans-
form is applied to m, t, r, and c so they are interpreted with
respect to the same white point, lines 8-9.

B. Geometric reflection synthesis

As part of our reflection removal pipeline, a geometric simu-
lation is used to construct transmission and reflection pairs
of images (t, r) from a dataset of pairs of scene-referred
(RAW) photographs (i, j) ∈ D that were not captured with
or through glass. These transmission and reflection pairs are
then added together to form the training data for our models,
with ground truth provided by the constituent images in each
pair. This simulation approach overcomes the scaling bottle-
neck of capturing real reflection images for training, which
is difficult because ground truth (without the glass present)
is not readily available.

In particular, we synthesize transmission images t = T (i)
and reflection images r = R(j) as functions of i and j that
appropriately model Fresnel attenuation, perspective projec-
tion, double reflection, and defocus blur. We omit from T
effects related to global color, dirt, and scratches since ex-
isting photo editing tools are well equipped to correct them
after reflection removal. Examples are shown in Fig. S1, and
an overview of the synthetic images is shown in Fig. S2.

Oblique Fresnel Double Reflection Defocus Blur

Figure S1. Simulated geometric properties at extreme values. Blurs
are typically subtle.

B.1. Fresnel attenuation
Fresnel attenuation is the most essential property to simu-
late because it reduces the intensity of the reflected image.
Specifically, reflections r are attenuated by a spatially vary-
ing factor α that depends on the angle of incidence θi at
which light strikes the glass with respect to the surface nor-
mal vector. As derived in [25],

α =
1

2
(α⊥ + α∥) (1)

α⊥ =
sin2(θi − θ′i)

sin2(θi + θ′i)
(2)

α∥ =
tan2(θi − θ′i)

tan2(θi + θ′i)
, (3)

where θ′i = arcsin(1κ sin θi), and κ is the refractive index of
glass. For θi ∈ [0◦, 45◦], Fresnel attenuation accounts for up
to −4 stops (underexposure), and gradually strengthens to
−1 stop for rays that glancingly strike the glass at 83◦.

To specify θi, we define images r = R(j) as originating
from a mirror surface, with incident rays reaching the camera
by the law of reflection. In the next section we decribe how
to simulate a diversity of practical geometric configurations
of the glass and camera to construct θi and thus compute
α. Glass also attenuates the transmission t = T (i) by 1− α.
This is typically close to 1, but at extreme angles it creates
a visible darkening effect (Fig. S2, example 26). Typical
attenuation levels are shown in Fig. S2 in the column labeled
“reflection.”

B.2. Camera projection
We model consumer photography applications in which one
sees a subject partially visible behind glass and takes a pic-
ture of it. This constrains the relative pose of the camera and
glass, and introduces natural priors on the location and ap-
pearance of reflections. For example, skies typically reflect
near the top of images, and reflections are typically stronger
at the edges of photos where the camera rays strike the glass
at a relatively higher angle of incidence, θi.

Inclination angle ϕ. Most glass is approximately verti-
cal, so if the viewpoint of t looks upward, the viewpoint of r

ContextReflectionTransmissionObservationContextReflectionTransmissionObservation

O
bl

iq
ue

 F
re

sn
el

Is
ol

at
ed

 L
ig

ht
s

In
te

rio
r W

in
do

w
s

D
ef

oc
us

 &
 F

re
sn

el
D

ef
oc

us
 B

lu
r

Po
w

er
fu

l S
ki

es
Fl

or
es

ce
nt

 C
ol

or
ed

N
ea

rly
 In

vi
si

bl
e

D
ar

k
In

te
rio

rs
In

te
rf

er
in

g
Te

xt
ur

e
Sa

tu
ra

te
-to

-B
la

ck
Li

gh
tin

g
C

ol
or

 V
ar

.
Sp

ar
se

 In
t.

Li
gh

ts

In
te

rio
rs

 a
t D

us
k

Pe
rc

ep
ua

lly
 D

iff
ic

ul
t

M
ul

ti.
 C

ol
or

 L
ig

ht
s

Fu
ll

R
ef

l.
Sc

en
es

Sa
tu

ra
tio

n
In

ca
de

sc
en

t I
ll.

B
rig

ht
 R

ef
l.

Sk
ie

s
In

te
rf

er
in

g
Te

xt
ur

e
D

ou
bl

e
R

ef
le

ct
io

n
N

ea
rly

 O
pa

qu
e

In
te

rio
rs

 a
t D

us
k

M
at

ch
ed

 H
or

iz
on

s
In

te
rio

r W
in

do
w

s

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Figure S2. Dataset overview (2048p). All images are simulations that use RAW sources. The numbers are referenced in the text.

should as well. We use a pose estimator [18], and augment
the search for realistic pairings (t, r), Sec. 3.1, by checking
if ϕt − ϕr = ∆ϕ is below a maximum absolute value. In ad-
dition to this inclination discrepancy filter, images are culled
if their inclination angle ϕ exceeds a threshold. This aligns
the horizons of t and r, which introduces spatial priors, as
illustrated in Fig. S2 examples 2, 5, 14, 20, and 24.

Roll angle ρ. Images are culled if their estimated roll ρ
exceeds a maximum absolute value as these typically indi-
cate that the pose estimator has failed.

Field of view. Images are also culled if the es-
timated vertical FOV is zero, which indicates general
pose estimation failures. Otherwise we randomly sample
FOV ∼ U(FOVmin,FOVmax), where U is the uniform dis-
tribution.

Azimuth angle θ. Most glass in consumer photogra-
phy is roughly planar. We constrain the camera azimuth
with respect to the glass so that the camera rays strike this
plane (accounting for the FOV). We randomly sample θ ∼
U(−θmax, θmax). The effect of this constraint can be most
easily seen in Fig. S2 where highly oblique camera angles
create spatially varying Fresnel attenuation across the reflec-
tion component (examples 6, 7, 14, 19, 23, and 26).

B.3. Defocus blur
Recently Lei [28] found that performance of state-of-the-art
methods degrades significantly for sharp reflections due to
an imbalance of blurry images in training and testing data.
Physically based methods have been developed to introduce
realistic defocus blur using depth maps [24], but this intro-
duces a data collection bottleneck by requiring RGBD cam-
eras that also have physical limitations. We instead model a
physically based prior on the amount of defocus blur.

Defocus blurs are determined by the camera focus depth,
aperture, and focal length. Points on an object at depth do
that differs from the focus depth df project to a circular re-
gion with diameter δ,

δ =
|do − df |

do

f2

N(df − f)
, (4)

where f is the focal length, and N is the aperture f-number.
This circle of confusion [15] is magnified with increasing
focal length f or decreasing N.

Defocused images are simulated by sampling diameters δ
(mm) for the circle of confusion. The focal length f (mm)
and aperture N (dimensionless) are sampled according to
their physical ranges in mobile cameras. The object and fo-
cus depths do and df (feet) are sampled d ∼ U(dmin, dmax),
in the plausible and finite range of scene depths to which δ is
sensitive. The diameter δ (mm) is converted to a percentage
of the sensor height, δp (the minimum sensor dimension).
Reflections r = R(j) are blurred by convolving them with a
circular defocus kernel with pixel diameter hδp, where h is

the minimum dimension of the image j in pixels. We main-
tain this physical calibration when images are cropped into
halves to simulate contextual views (Sec. 3.3 and Section C).

Our physically based sampling procedure simulates re-
flections with a realistic amount of defocus blur for con-
sumer photography. An example of a strongly blurred reflec-
tion is shown in Fig. S1. We however find that reflections are
typically sharp, as Lei [28] also notes. Typical defocus blurs
are shown in Fig. S2; strong blurs are shown in examples 22
and 23.

B.4. HDR Environment sampling
A dataset of indoor 360◦ HDR Image-Based-Lights (IBLs)
are used as an additional source of scene-referred im-
ages [14]. Artificial light sources in HDR images are typ-
ically not saturated, which makes it possible to simulate re-
flections of light sources that are not saturated (or, under-
exposed RAW images could be used).

When one of the images in a pair (i, j) ∈ D is an IBL, a
synthetic camera is constructed with a pose that matches the
RAW image to which it is paired (see Sec. B.2), excepting
that the azimuth θ is sampled independently and uniformly
at random in 360◦. Contextual images c are simulated by
a second synthetic camera within the IBL with an adjacent,
non-overlapping FOV.

The IBLs [14] are captured under a fixed white point,
which allows for the color of the illuminant (i.e., its white
balance) to be mixed correctly with the RAW data. We cali-
brate the exposure of these indoor IBLs by setting their me-
dian intensity to match the median value of all indoor RAW
images (the median contends with saturated pixels). This
cropped HDR image can be photometrically combined, and
geometrically transformed using functions T or R. The ef-
fect of HDRs is shown in Fig. S2: reflected light sources,
windows, etc. are produced by HDRs in examples 1, 2, 5, 6,
11, 14, 20, 24, and 26.

B.5. Double reflection
Glass panes introduce multiple reflective surfaces that create
a double reflection or “ghosting” effect. Shih et al. [39] as-
cribe the effect of double reflection to the thickness of a sin-
gle or double pane, and show shifts up to 4 pixels for thick-
nesses in 3–10mm under some viewing distances, but double
reflections are often much larger. Gaps between panes reach
20mm as reported commercially, and each pane adds up to
7mm. These multiple reflecting surfaces are also not neces-
sarily parallel, uniformly thick, or flat as assumed in [39].
These factors produce significant double reflections even in
modern windows, including when the camera is distant. We
simulate these complex effects by adopting the geometric
model of [39] and allowing a greater range of thicknesses,
8–20mm. We uniformly sample a glass thickness, physical
viewing distance, and refractive index. These facilitate a ray

tracing procedure, detailed below. Fig. S2 shows double re-
flections in the dataset; see examples 2, 4, 5, 7, 8, 12, 14, and
15.

The primary reflection that contributes to r = R(j) is
determined by the Fresnel attenuation αj as described in
Sec. B.1. Specifically, the intensity of light at each homo-
geneous image coordinate x is α(x)j(x), because we have
defined j(x) as encoding the light along the incident rays
r with ∠(x, r) = 2θi where θi is the angle of incidence.
We simulate a second reflection by tracing the camera rays
x through a simulated single pane of uniform thickness to
identify the coordinates x′ at which they would emerge from
the glass after being internally reflected from the back sur-
face of the pane. Coordinates x′ are shifted according to
their transit distance within the glass, which is determined
by the law of reflection and Snell’s law. We neglect the lat-
ter as insignificant in comparison to the former and the vari-
ous non-modeled physical effects of real glass panes. Under
these assumptions, rays that enter the glass at x emerge at x′

in direction r. An image j′ is needed to describe the inten-
sity of incident light in direction r at x′, but j′(x′) ̸= j(x′)
because we have defined j(x′) as describing the light re-
flected from a corresponding direction r′. Since we do not
have j′, we assume that the light field is sufficiently smooth
that j′(x′) ≈ j(x′), since ∠(r, r′) = ∠(x,x′) is small. We
therefore warp j such that x′ 7→ x, and combine this warped
image jw with j to produce a double reflection image.

The double reflection image is given by jd = αj + βjw,
where α is the known Fresnel attenuation due to the primary
reflection (see Sec. B.1), and β specifies the attenuation of
the rays that travel into the glass before they are internally re-
flected back to the camera. These latter rays encounter three
surfaces, and lose intensity at each one. The first surface is
the front face of the glass, where they are mildly attenuated
by 1− α as they transmit into the glass. Second is the back
face, where they reflect and are attenuated again according
to their angle of incidence, which has been altered by Snell’s
law. This change of incidence angle however has a negligible
effect on the the Fresnel attenuation factor within the typical
incidence ranges. We therefore use α as the attenuation at the
second surface. Lastly, the rays re-encounter the front face
of the glass (now from within) where they transmit out of the
glass and are attenuated again by approximately 1− α. This
gives β = (1− α)α(1− α).

Fig. S1 shows an example of a simulated double reflec-
tion, selected to show a case when the primary and secondary
reflections are significantly shifted. We note that no dou-
bling effect can occur along the direction of the glass surface
normal because the rays that enter the glass re-emerge af-
ter internal reflection at the same location they entered. Thus
double reflection fields that follow our geometric model (and
the model of [39]), in which there are two perfectly parallel
planes, must exhibit a radial pattern around the image of the

glass surface normal. These patterns are not always apparent
in practice, which suggests that the geometrical arrangement
of glass surfaces that is described by Shih [39] omits impor-
tant factors. We nonetheless adopt their model as being suf-
ficient because visible reflections are typically localized to
regions of an image, which obscures the presence or absence
of a radial center.

C. The contextual photo

One arrangement of a primary and a contextual camera is
shown in Fig. S3 (see caption for explanation). This spe-
cific arrangement of cameras is neither required nor typical
in practice, but it reveals general geometric differences be-
tween the views of primary and contextual cameras. The
view of the so-called reflection camera is translated by 2d,
twice the distance d to the glass. Furthermore, if the contex-
tual camera is rotated 180◦ from the primary, the latter view
will be in an opposite direction. At extreme rotations, the
views will have little or no overlap.

Because the translation and rotation of the contextual
camera view can differ significantly from the primary cam-
era, it is difficult to simulate a contextual view using a dataset
of image pairs t = T (i) and r = R(j) that are used to create
mixture images m from the perspective of a primary camera.
In particular, content from j should not be copied into a sim-
ulated contextual image c, as trained models could learn to
cheat by searching for patches of r that have the same per-
spective projection in c. Such patches will not be present in
practice.

We create a scalably large dataset of contextual images c
by noting that c will often contain no common content with r
unless the photographer is asked to point the camera at what
they see in the reflection. We minimize such burden on the
photographer, and define the contextual image c as any im-
age of the reflection scene that does not view the same parts
of the scene as r. This definition allows contextual images
to capture lighting information (sunlight, incandescent, etc.)
and scene semantics (outdoor, indoor, city, nature, etc.) to
aid reflection removal.

To construct c, we crop reflection source images, j, into
non-overlapping left/right or top/bottom squares (j0, j1), and
similarly for transmission source images i. This yields four
pairs for simulation (ia, jb) : (a, b) ∈ {0, 1}2 for all (i, j) ∈
D. The mixture and context images are (mab, c1−b), where
mab = C(T (ia) + R(jb)), and c1−b = C(j1−b). We fix the
capture function C for both m and c to have the same white
balance so c can describe the color of the reflection scene in
addition to its semantics. Fig. S2 shows example contextual
photos.

Contextual Camera

Reflection (Virtual) Camera

Contextual Camera

d

d

Visible
in Both
Photos

Object

Only
Visible in
Reflection

Not
Visible in
Reflection

Visible in
Context photo

Visible in
Reflection

Centers of
Projection

Real

Virtual
Glass

Figure S3. The geometry of a primary and contextual camera view.
In this figure the two views are co-located (black dot), and the lat-
ter is rotated 180◦ with respect to the former. Neither condition is
required or typical; they are shown to illustrate one possible geo-
metric arrangement. The contextual camera frustum is shown at the
bottom (⊥ symbol); the primary camera frustum is not drawn. The
reflection contains the scenery that would be captured by a virtual
camera behind the glass (open circle, dashed ⊥), equidistant to the
glass wrt the primary camera, and swung azimuthally in the oppo-
site direction. Note, the object (green circle) appears at the right
edge of the contextual camera’s image (small green circle above it),
but slightly left of center in the virtual camera view (small green
circle near top of figure), and hence it is slightly right of center in
the captured primary photo because the virtual camera is flipped
left/right.

D. Data collection
Below are the data search and collection methods summa-
rized in Sec. 3.1.

D.1. Mixture search
Well-exposed mixtures m are identified by checking if the
mean pixel value is within a normal distribution over the
pixel values in the dataset of RAW images.

Well mixed m are identified by computing the SSIM be-
tween m and t as a block-wise image, and checking if the
mean of this SSIM image is within a useful range: if the
SSIM is too high, the reflection is imperceptible; if it is
too low, the mixture is not visually interpretable, even by
a human. We compute this single channel SSIM image as

a weighted average of the corresponding per-channel SSIM
images. The weights are the average value in each color
channel, which better accounts for strongly colored images.
Lastly, the standard deviation of this single channel SSIM
image is checked to remove reflections that are impercepti-
ble, but nonetheless produce a low mean SSIM by spreading
their power broadly (they have low spatial variance). The
effect of this search can be seen in Fig. S2: simulated reflec-
tions can be faint or nearly invisible (examples 19, 22, 23,
and 25); or so strong that the transmission is nearly invisible
or slightly difficult interpret (examples 4, 12, 16, and 21).

D.2. Source images
We collect all images at their native RAW camera resolution
to facilitate training upsampling methods. We label all im-
ages, including IBLs (Sec. B.4), as outdoor O and indoor
I since glass typically separates indoor and outdoor spaces.
This information is available in existing datasets [8, 10, 14],
and can be collected at large scales via crowd-sourcing.
We define our dataset D of pairs (i, j) for simulation as
D = (O × I) ∪ (I × O) ∪ (I × I)− P , where P is all
pairs i = j. The set O ×O is uncommon, and should be in-
cluded sparingly following empirical priors. We omit them.

These pairings of source images interact with the mix-
ture search process (Sec. D.1) to introduce photometric and
semantic priors, as seen in Fig. S2. Outdoor transmission
scenes typically have reflections of indoor light sources or
windows (examples 1, 2, 5, 9, 11, 14, 19, 24) unless it is
dusk (example 3). Indoor transmission scenes typically have
strong reflections of skies or full outdoor scenes due to the
brightness of natural light (examples 4, 7, 8, 10, 12, 15, 16,
17, 18, 21) unless it is dusk (example 13). Lastly, indoor-
indoor pairings are often complex because t and r are typi-
cally similar in brightness (examples 6, 20, 26).

D.3. Simulation settings
Two capture scenarios are generated for each pair (i, j) ∈ D.
A virtual camera is posed randomly with maximum azimuth
θmax = 50◦ toward the glass and FOV ∼ U(50◦, 80◦),
where U denotes the uniform distribution. Pairs (i, j) are
culled if |∆ϕ| > 15◦, or either image has absolute incli-
nation value |ϕ| > 45◦ or roll |ρ| > 10◦ (see Sec. B.2).
Lastly, capture scenarios are also culled if the camera rays
from more than 4 pixels do not strike the glass (they are par-
allel or divergent). This final check ensures that the glass fills
the FOV.

We compute spatially varying Fresnel attenuation with
index of refraction κ ∼ U(1.47, 1.53) [45]; see Sec. B.1.
Double reflections are simulated with glass thickness (mm)
in U(8, 20) at distances (mm) in U(500, 2000), with 50%
probability of being a double pane; see Sec. B.5. Defo-
cus blur is simulated with object and focus distances (ft)
in U(1, 100) with aperture and focal length of iPhone main

Mixture

4p
64c

8p
64c

16p
64c

256p
64c

F-Net

...

16p
64c

256p
32c

P-Net

...

4p
64c

8p
64c

16p
64c

256p
64c

F-Net

......

16p
64c

256p
32c

P-Net

......

ContextMod. Merge

Mod. Merge

Mod. Merge

Finishc

Aff. Mod

Up Mod

Affine Pred.

tran refl

M
od. M

erge

F-Net
Level K

Mod. Level K-1

Mod. Level K+1 Affines

a
bAff. Mod

Up Mod

FPN Comb.

Mix. Feats.

Affines

Context Feats.

A
ffine Pred.

Linear Linear

Paired-Channel MLP

c

Figure S4. The base model. Mixture and context images are projected into a high dimensional space using a shared backbone [43]
(labeled P-Net; weights are shared), and a feature fusion network [44] (labeled F-Net; weights are shared). The context features are used
to predict affine transforms for each feature channel at each resolution. Channel-wise modulation is used because contextual photos do
not always include content that can be matched. Modulation can help identify the reflection in the feature space. We use two conv-mod-
deconv operations of [23] within the modulated merge blocks. The FPN combine op is a fast normalized fusion module from the BiFPN
architecture [44].

cameras, N ≈ 1.6 and f ≈ 26mm (35mm equivalent units);
see Sec. B.3. Simulated mixtures are culled if the mean
SSIM between m and t falls outside of [0.4, 0.94], or if the
standard deviation of this SSIM is below 0.05; see Sec. D.1.

E. Reflection removal

Here we provide details of the base model architecture, as
summarized in Sec. 4.1, and the upsampler, Sec. 4.2.

E.1. Base model
The base model is designed to leverage local and global fea-
tures, Fig. S4, and produce 2562 pixel outputs in about 1
second on a mobile device to meet req. 4 (see Sec. 1).

A feature backbone [43] is used to project m into a lin-
ear, high dimensional space (32-D) and compute semantic
features (labeled P-Net). Features are at a variety of spa-
tial and channel resolutions: (256, 32), (256, 16), (128, 24),
(64, 40), (32, 112). These features include the outputs of the
initial convolution layer of the EfficientNet-B1 variant
of [43] (as implemented by [54]), which we modify to use an
initial stride of 1 rather than 2 so no initial down-sampling is
performed on the input 256× 256 pixel images.

The multi-resolution feature tensors from the backbone
are next fused into 64 channels at the input resolution us-
ing the D0 variant of the EfficientDet feature pyramid ar-
chitecture [44, 54] (labeled F-Net). This architecture first
augments the input features with three additional levels:
(16, 64), (8, 64), (4, 64), where each results from a 2 × 2
maxpool with stride 2, and the first is preceded by a 1 × 1
conv, batch norm, and no activation. The augmented input

features are then input to a series of so-called BiFPN lay-
ers [44] (see Fig. 3), which fuse features from low resolution
to high, and then back to low resolution, in a zigzag opera-
tion that is repeated three times. To obtain high resolution
fused features at only the input resolution of 256p, we add a
fourth repetition in which we omit the final high-to-low pass.
We furthermore modify the low-to-high pass to incorporate
the contextual image, as described next.

The contextual image, c, is passed through the same F-
Net and P-Net using the same weights as m. The features of
c and m at the lowest resolution are input to an affine predic-
tion module, Fig. S4 (lower right). This module first vector-
izes its two 64×4×4 inputs, and passes them through a fully
connected layer to transform them into two 64-D vectors.
These vectors embody 64 pairs of channels, which we con-
catenate and input to an MLP (labeled paired-channel MLP)
that predicts affine transforms that modify the features of the
FPN during the final low-to-high pass.

The paired-channel MLP is a series of grouped convolu-
tions that implement 64 independent MLPs followed by a
fully connected layer. These 64 MLPs each have 2 inputs, 2
hidden, and 1 output dimension, with leaky ReLUs after each
layer. The inputs to these MLPs are corresponding pairs of
channels from m and c. The outputs compose a single 64-
D vector that is input to a fully connected layer to predict
64 × K × 2 affine transforms, two for each of the 64 × K
channels and levels of the FPN.7 Conceptually, this paired-
channel MLP has the capacity to compare c and m to identify
channels that match the reflection scene, and to determine

7Note that we include two levels at 2562 pixels, in correspondence with
the resolutions of the features that we extract from the backbone.

how to transform those channels to remove reflections.
The predicted affines from the paired-channel MLP are

used in the final low-to-high pass of the FPN to perform a
series of modulated merge operations, Fig. S4 (upper right).
These merge operations use two affine transforms per feature
channel, labeled a and b in Fig. S4. Transforms a are used
to perform a conv-mod-deconv operation ala StyleGan [23]
on the features of m from FPN level K. These features are
subsequently combined with the features from level K + 1
by resampling the latter features 2× and using fast normal-
ized fusion [44] (labeled FPN Combine). These combined
features are modified with a second conv-mod-deconv oper-
ation using the second group of affines, b.

The final modulated merge produces 64-D features at
2562 pixels. These features are concatenated with m and the
features from the first layer, for a total of 3 + 32 + 64 = 99
channels. A convolutional finishing module is then applied.
This module has the capacity to further identify and finally
render t and r. To simplify comparison to prior work, our fin-
ishing module is the head in [59]. The first layer is 1×1, and
projects the 99 input features to 64-D, which is maintained in
the remaining operations. Those operations are 3× 3 convo-
lutions dilated by (1, 2, 4, 8, 16, 32, 64, 1); each is followed
by a batch norm and leaky ReLU. A final 1× 1 convolution
generates 6 channels: t and r.

The model is trained using the perceptual, adversarial,
and gradient losses of Zhang et al. [59] with a ResNet-based
discriminator [23], and optimized 5-tap derivatives [13] in
the exclusion loss to suppress grid artifacts. We also adopt
the l1 reflection loss of [59] to minimize arbitrary differences
to prior work. Perceptual losses are computed in non-linear
sRGB by applying gamma compression and using VGG19
features, weighted to contribute equally. Crucially, we train
end-to-end from randomly initialized weights.

E.2. Upsampler
The upsampler is shown in Fig. S5 and introduced in
Sec. 4.2. It transforms low resolution outputs t, r from the
base model to a flexible output resolution. We use a Gaussian
pyramid and apply the same upsampler at each level. The up-
sampler projects the low-res, 3-channel inputs (m, r, t) into
a high dimensional space ϕ using convolutions in an expand-
and-contract pattern. We use 3×3 kernels for feature expan-
sion, and 1 × 1 kernels for contraction. There are 3 layers
with hidden dimensions (32, 16), (64, 32), (128, 64). We use
leaky ReLU between the hidden layers, and no skip connec-
tions. Batch norms are omitted to facilitate a feature match-
ing process, described next.

The components t and r are separated by identifying low
resolution features ϕt and ϕr in the low resolution mixture
ϕm. We predict 2, per-pixel, per-channel low resolution
masks using a mask prediction module, Fig. S5 (bottom),
which uses a paired-channel MLP (defined in Sec. E.1) to

predict its affine transforms (see also Sec. 4.2). The joint
mask predictor also uses a paired-channel MLP, but it di-
rectly outputs the final masks rather than affine transforms.
The input, hidden, and output dimensions of both paired-
channel MLPs are (2, 2, 2, 1, 2). The final layer is fully con-
nected. As noted in Sec. E.1, these MLPs can be imple-
mented efficiently as a series of grouped 1× 1 convolutions.

The finishing network is a series of 3 × 3 convolutions
that are distinguished by the number of channels and dila-
tion rates, 128:(1, 2), 96:(1, 2, 4, 8), 64:(1, 1). A final 1 × 1
convolution produces the 6 channels of output for T and R.

The upsampler is trained using a cycle-consistency loss
on the predicted transmission and reflection, in addition to
the losses of Pawan et al. [35]. Perceptual features are com-
puted by converting to non-linear sRGB. For each predicted
high resolution image x′

H ∈ {t′H, r′H} the loss is a weighted
sum of the following terms: E[|x′

H − xH|], E[(x′
H − xH)

2],
E[|∇x′

H − ∇xH|], LPIPS(x′
H, xH) and E[|D(x′

H) − xL|],
where D downsamples x′

H to compute the cycle consistency
loss, and E denotes expectation over spatial dimensions and
(where applicable) the output of the gradient operator. We
use both the l1 and l2 norms to avoid introducing arbitrary
differences to prior work [35]. The norms are weighted
0.2, gradient terms 0.4, LPIPS 0.8, and cycle consistency
10. These losses are accumulated over three upsampling lev-
els from 1282 to 10242 pixels (smaller than the 2562 pixel
output size of the base model to contend with memory con-
straints during training). The upsampler is trained first on
the ground truth low resolution inputs, and fine tuned on the
output of the base de-reflection model. When fine tuning,
the 2562 pixel outputs of the base model are downsampled to
1282 pixels. At test time, no downsampling is applied. The
upsampler takes 2562 pixel images as input, and produces
output at 20482 pixels and higher.

x x

c

Figure S5. Upsampler at one pyramid level.

F. Results

Here we provide results and discussion in addition to Sec. 5.

F.1. Evaluation methods
Ground truth capture. Ground truth capture was used for
Fig. 5, Fig. 7, and Fig. S6. Mixture images m were captured
with ground truth r by placing a black material behind the
glass and taking a second photo. Images t were computed
t = m− r in linear sRGB after normalizing the exposures
and using the white point of m (see ACR Step 6, Sec. 3).
Nonetheless, we found it necessary to capture m and r with
fixed exposures and white points to avoid imprecisions in the
values that are stored in RAW metadata.

SSIM computation. We report SSIM values between
pairs of RAW images (a, b) by first transforming them into
linear sRGB (ACR Step 6, Sec. 3) using the white point of a.
By using a consistent white balance, across the ground truth
m, t, and r, we penalize errors in the white balance of the
estimated t and r. For SSIM computation, images are then
converted to non-linear sRGB by applying standard gamma
compression (ACR Step 8):

xsRGB =

{
12.92x x ≤ 0.0031308

1.055x1/2.4 x > 0.0031308

where x are pixel values in a linear sRGB image. We omit
tone mapping operations (ACR Step 7) to remove subjec-
tivity from the SSIM values. Lastly, SSIMs are reported as
averages over the low-resolution images (denoted t, r) and
high-resolution images (denoted T, R).

Ground truth photographs. Ground truth images were
captured in three common scenarios: 1) looking out of a
home window, Fig. 7; 2) photographing artwork, Fig. S6
(left); and 3) looking into a display case, Fig. S6 (right). In
scenario one, the illuminant in the reflection scene is approx-
imately 3,000K, and the white point of the mixture image
is 7,300K. In scenario two, these values are 6,000K and
6,850K, and in scenario three they are 6,000K and 3,627K.

F.2. Base model comparisons
Reflections with ground truth. In Fig. S6 we show two im-
ages with ground truth reflections: photographing artwork,
and looking into a display case. These complement Fig. 7,
in which a photo was taken when looking out of a home
window. The home window view includes an interior re-
flection that is strongly yellow due to the indoor illuminant
color. In contrast, the artwork in Fig. S6 is illuminated by
the same light source as the reflection scene, which produces
a correctly white balanced reflection that consequently has
more diverse colors. In contrast, the display case in Fig. S6
(right) reflects an outdoor scene with a different white bal-
ance, which produces a strong, blue reflection. This outdoor

reflection is visible over broad regions because the illumi-
nant is powerful enough to reflect off of the diffuse ground
and sidewalk surfaces with sufficient intensity to be visible
over the contents of the display case. These exterior reflec-
tions are also qualitatively different from those in photo of
the artwork, where the reflection is sparse. The SSIM of the
artwork is therefore high on average (0.994), but the reflec-
tions are locally strong, whereas the SSIM of the display case
is low (0.833) because the reflection affects broad regions.

Our base models improve the SSIM of t and r in all of
these ground truth examples (labeled in lower case t, r), and
this extends to the upsampled results (labeled in uppercase
T, R) whereas prior works do not perform as well (Fig. S6
and Fig. 7). Our contextual model produces a more correct
transmission and reflection image on the artwork. On the
display case, the contextual model improves the reflection,
whereas the cars are not fully removed. We believe this vari-
ation results from saturated regions in the sky of the con-
textual photo, where we use the as-shot illuminant color in
the EXIF to recover the color of the saturated pixels. Lastly,
the method of Zhang [59] associates blue colored content
with the reflection in both images, but this is incorrect for
the painting; the transmission image is therefore distorted.

We found that our model removes blue colored reflec-
tions consistently well, and we believe that this results from
their commonness (outdoor illuminants are powerful and
therefore frequently create reflections that appear blue when
mixed with interior scenes). The yellow color of interior re-
flections on outdoor scenes also seems to help, as our model
can separate textured objects like the painting on the wall in
Fig. 7 from the tree texture. We also tried illuminating the
indoor scene in Fig. 7 with a special studio light that is much
more powerful than a typical interior light source. This cre-
ated a warm indoor reflection that was analogous to the dis-
play case in Fig. S6 (right), where the reflection covers large
parts of the transmission scene. Our model results are less
consistent in this artificial situation. We believe this is be-
cause it is rare for interiors to be flooded with such strong
lights, and so their reflections are uncommon in our training
data. We find that interior reflections tend to appear in small
regions because most artificial light sources are weak—only
objects near the light will be bright enough to reflect over
outdoor scenes. At nighttime, however, consumer illumi-
nants easily reflect over dark cityscapes. We found that our
model results are less consistent on such images. This can
be improved by augmenting the dataset with source images
t = T (i) that were taken at nighttime.

Reflections in the wild. In Fig. S7, S8, and Fig. 8 we
show results on reflections that were captured in-the-wild,
where it was not possible to capture ground truth: (left) shop-
ping in the morning, (middle) looking into a building at mid-
day in a city, and (right) photographing artwork in an out-
door mall (Fig. S7); while traveling and photographing art-

G
ro

un
d

Tr
ut

h
C

ap
tu

re
d

Ph
ot

o
O

ur
s

Zh
an

g
(R

T)
 +

 U
p

D
SR

N
et

 (R
T)

 +
 U

p

t0.985T0.990 r0.613R0.640

t0.818T0.850

t0.966T0.976

t0.994T0.997

T0.994 R0.316 t0.984 r0.292

R0.405 r0.337

R0.615 r0.639

R0.740 r0.781

+1.7

+1.7

+1.7

+1.7

+1.7

context

t0.952T0.906 r0.792R0.813

t0.887T0.902

t0.936T0.956

t0.966T0.937

T0.833 R0.620

R0.758 r0.620

R0.864 r0.867

R0.933 r0.924

t0.813 R0.550 context

O
ur

s +
 C

on
te

xt

Figure S6. Comparisons with ground truth at 256 × 384 and 2048 × 3072. The re-trained, low-resolution methods Zhang [59] and
DSRNet [20] are upsampled using our upsampler, and both low- and high-resolution results are shown. The SSIM of the predicted t and r
is reported at low resolution (labeled t, r) and high (labeled T, R). Errors in ground truth are outlined and omitted from the SSIM.

Morning Shopping Midday City Artwork
C

ap
tu

re
d

Ph
ot

o
O

ur
s

Zh
an

g
- R

et
ra

in
ed

D
SR

N
et

 -
R

et
ra

in
ed

Zh
an

g
8-

bi
t

+2+2

+2

+2

+2

+2

+0.5

+0.5

+0.5

+0.5

+0.5

+0.5

D
SR

N
et

 8
-b

it
O

ur
s +

 C
on

te
xt

Context Context Context

Figure S7. Results for base models at 2562 pixels. Reflections marked “+X” are brightened by X stops compared to the transmission.

Travel Midday City / Art Travel
C

ap
tu

re
d

Ph
ot

o
O

ur
s

Zh
an

g
- R

et
ra

in
ed

D
SR

N
et

 -
R

et
ra

in
ed

Zh
an

g
8-

bi
t

+2

+2

+2

+2

D
SR

N
et

 8
-b

it
O

ur
s +

 C
on

te
xt

Context Context Context

Figure S8. Results for base models at 2562 pixels. Reflections marked “+X” are brightened by X stops compared to the transmission.

Zhang DSRNet

+1.5+1.5 +1.5Context

Zhang DSRNet

+1.5+1.5 +1.5Context

Figure S9. Reflection recovery. Our model separates reflections that can be difficult to spot with the naked eye. See Sec. F.2.

+0.5Context

Captured Photo Our Result Our Result (Reflection)

Figure S10. Removing lens flares. Although our training data do not include images of lens flares, our model can sometimes remove them.

+3.5 +3.5 +3.5
Captured Photo Ground Truth Our Result V-DESIRR

Figure S11. Upsampler performance comparison. We upsample a ground truth reflection image from 256× 384 to 2048× 3072 using our
method and V-DESIRR [35]. The latter creates strong artifacts due to resize operations that directly synthesize output pixels. Our model
eliminates these artifacts while using 29% fewer parameters.

work from a city street (S8). We compare to Zhang [59] and
DSRNet [20] using their published 8-bit models (bottom two
rows). The 8-bit models do not consistently remove in-the-
wild reflections, with the exception that the method of Zhang
et al. seems to have learned to remove blue colored content
(left); see also Fig. S9 (top). We retrained these prior works
on our photometrically accurate training data (marked “re-
trained”), and they improve significantly. This suggests that
the muted response of the 8-bit models on in-the-wild reflec-
tions results from differences between their training data and
real world reflections, and furthermore that the training pro-
cess of prior works is insufficient: pre-training on photomet-
rically inaccurate images, and fine-tuning on small datasets
of ground truth reflections does not produce models that gen-
eralize as well. Looking closely, however, note that the re-
trained models do still introduce blur and colored artifacts.

Our methods perform well across these diverse in-the-
wild use cases. In Fig. S7, both our contextual and non-
contextual models separate the strongly blue colored reflec-
tion, the complex cityscape reflection, and the artwork re-
flection (in the entrance to an indoor shopping mall). The
contextual model improves each of these cases, excepting
the transmission image for the shopping photo. We believe
this also results from the saturated regions in the upper right
of the contextual photo, where we have used the as-shot illu-
minant color in the EXIF to recover the pixels.

The midday city photo represents a difficult reflection,
and both of our models improve this image. The result of
the contextual model is more correct: the interior mural is
more accurately reconstructed, and the white sign that is ad-
hered to the glass is left more intact. Saturated regions near
the ceiling have color artifacts in both cases.

Lastly, the artwork example (right) has two illuminants, a
small warm colored artificial light, and a dominant outdoor
illuminant. The white balance of the image is determined
by the outdoor illuminant, which also illuminates the reflec-
tion scene, and this leads to a diversely colored reflection
that both of our models are able to remove. The contex-
tual model better preserves the texture of the artwork, and
does not associate that texture with the reflection, whereas
the non-contextual model does.

Subtle reflections. In Fig. S9 we show results on images
with subtle reflections, which are common in art museums
where the glass and lighting are optimized to reduce reflec-
tions. Our models are able to remove these reflections, and
recover r even when it is invisible to the naked eye. In the
painting (Rembrandt’s “St. Matthew and the Angel”), the re-
covered reflection has a strong blue color due to the special
glass that is used in museums, and it correctly depicts the
photographer and gallery. The colors in the recovered paint-
ing are also more correct. The specular reflection from the
surface of the painting (top) is not removed, and we believe
that this is the desired result. We have found that our models

will sometimes remove sharp specular regions that are sim-
ilar in color to the reflection from the glass, and this is visi-
ble in the upper quarter of the reflection image, where some
specular texture from the surface of the painting is visible,
and has been removed from the transmission.

In Fig. S9 (bottom) we remove reflections from Ansel
Adams’ “Residents of Hornitos.” Ceiling light sources are
visible at the top of the photo, and on the left there is a gen-
eral loss of contrast. The recovered transmission image has
accurately uniform contrast, and the reflection reveals the
hidden image of the photographer holding their cell phone.
Our model is able to recover hidden reflections like this in
part due to the bit depth of RAW images. The reflection is
also blurry and differs in color.

Our ability to uncover subtle reflections is in part due to
the extended bit depth of RAW images. The images in Fig. 1,
Fig. 5-8, Fig. S6-S15 are ≥15-bit. ACR Step 3 is uint16.
Together, the source datasets for the simulation (MIT5K [8]
and RAISE [10]), are 12- and 14-bit (43%, 57%).

Lens flares. Our model can also remove lens flares,
which are reflections from the optical elements within the
camera lens. An example is shown in Fig. S10. Most of
the lens flare is removed, excepting one saturated region.
The flare itself is also recovered in the reflection image even
though the simulated reflections r in the training dataset do
not include lens flares. Since our method has some ability to
generalize to flare removal, and it is difficult to create train-
ing data for flare removal, it could be helpful to pre-train
flare removal methods first to remove photometrically accu-
rate simulated reflections.

Failures. Failures typically occur when an image is
too difficult for a person to visually interpret, as shown in
Fig. S12. Light sources might also be missed, or a halo might
be left behind, but in-painting methods can fill these holes.
Reflections are usually removed best when glass covers the
field-of-view, blocking the photographer from their subject,
as this matches how the simulation is designed. As a result,
local reflections on objects are typically not modified, which
is desirable (e.g. shiny cars, distant windows).

Results on 8-bit photos. In this work, all results are
presented on RAW photos because our models are trained
for RAW. Nonetheless, our RAW-trained models have some
ability to remove reflections in 8-bit photos if gamma is
pseudo-inverted, as shown in Fig. S13, but removal may be
incomplete. This difference between RAW and 8-bit photos
appears because the latter are produced by diverse camera
pipelines and artistic adjustments. This diversity of finish-
ing operations must be considered when training and testing
models that have been trained on RAW-based simulation im-
ages. It is therefore not meaningful to test our models on
datasets of 8-bit images.

Captured Photo Our Result Our Result (Reflection) Captured Photo Our Result Our Result (Reflection)

Figure S12. Failure cases. Hard-to-interpret photos can cause reflection removal to be imperfect.

Captured Photo Result on RAW Result on 8-Bit

Figure S13. Results when running a RAW-trained model on 8-bit
inputs. Results on 8-bit photos can be obtained by pseudo-inverting
gamma, but they are often imperfect because such photos have un-
dergone a variety of non-linear finishing effects that are not present
in RAW images (see ACR Steps 7-8).

F.3. Upsampler comparisons

In Fig. S11 we provide additional comparison to
V-DESIRR [35] in which we upsample a ground truth
reflection image (a transmission image is upsampled in
Fig. 5). A magnified region is inset, and shows that our
method preserves details of a framed photo through the
upsampling process, whereas V-DESIRR re-introduces the
reflection content (the bars of a fence; see captured photo,
white box). In the rest of the image, V-DESIRR introduces
strong color artifacts around sharp edges. This is a consistent
issue that appears to result from the propagation and am-
plification of small errors that are made at low resolutions.
Our model reduces error propagation by masking t and r
out of the high-resolution mixture features at each level.
We are able to predict an effective, high resolution mask
with a lightweight and fast model by matching features,
whereas V-DESIRR must use its model capacity to infer
from the high-resolution mixture image what details to add
into the low resolution clean images. This latter problem is
more difficult to solve with limited model capacity, and it is
difficult to avoid propagating errors.

In Fig. S14 we show a typical failure mode of our model.
The input image (top and center left) has a reflection of a tex-

V-DESIRR Upsample

Input Photo

Our Upsample

Our Base Output

Figure S14. Upsampling errors. V-DESIRR [35] re-introduces low-
frequency reflections. Our method avoids this error, but copies
high-frequency textures that were not visible at 2562.

Edited ReflectionOur Result (Reflection)Our ResultCaptured Photo

Context

Figure S15. Predicting the reflection enables aesthetic editing and error correction.

tured exterior wall. Our base model correctly removes this
reflection at 2562 pixels (center right). Notice that, at low
resolution, it is possible to represent the vertical edges of the
exterior wall, but not the texture of the wall. We upsampled
this result with both V-DESIRR and our model.

V-DESIRR re-introduces the low frequency edges that
were removed by the base model, and it copies the high
frequency wall texture into the transmission as well. Our
model does not re-introduce the low frequency edges, but
the high frequency texture of the wall that is not present at
low resolution is copied into the transmission image. This
produces a texture artifact in the final result. Future work
should reduce these kinds of errors while keeping the archi-
tecture lightweight. This might be done by reusing feature
information from the base model, and across levels of the
Gaussian pyramid as the upsampler is iteratively applied.

F.4. Editing reflections
In Fig. 6 and Fig. S15 we show examples of reflection editing
for aesthetic control and error correction (see also Sec. 5.4).
For Fig. S15, a photographer was asked to finish the photo
using the outputs of the reflection removal system. They
chose to re-introduce the reflection for aesthetic purposes,
and to correct errors. The reflections from the edges of the
top record player cover were removed by our system (white
arrows); the photographer pulled them back into their edited
image. Editing was performed in Photoshop using the tone-
mapped transmission and reflection images, and the “Linear
Dodge (Add)” layer blend mode.

G. Adobe Camera RAW, DNG SDK
Here we detail the code within the DNG SDK [1] version
1.7.1 that is used in our simulation functions Func. 1, Func.
S1 and Func. S2. In this work, the necessary SDK function-
ality was transliterated into Python to interoperate with the
geometric simulation (Sec. B) and mixture search (Sec. D).
To simplify the exposition, we however describe the SDK
code here in a functional manner, whereas the SDK is a class
system. Consequently, some of the SDK functions use class
member variables, and not all functions in this exposition of
the code map one-to-one with functions of the same name in
the SDK.

Function S3 Adobe DNG SDK, convert RAW images to XYZ.
Input: A RAW image
Output: A linear image in XYZ color
1: Extract the ACR Stage-3 image I with dng validate option -3.

{ACR Step 2}
2: Subtract the Stage-3 black level from I. {SDK Func. S5}
3: Divide I by the maximum pixel value.
4: Compute WhiteXY. {SDK Func. S9}
5: Compute the transform XYZ to CAM from WhiteXY. {SDK Func. S7}
6: Recover saturated highlights in I. {SDK Func. S6}
7: Transform I to XYZ using inv(XYZ to CAM).

{see also SDK Func. S4}
8: return the linear XYZ image I.

As discussed in Sec. 3 and Sec. A, reflections are sim-
ulated in XYZ color space by using the color process-
ing of the DNG SDK, which supports two paths to a
white balanced, linear RGB image: the ForwardMatrix

or the ColorMatrix. Only the latter path facilitates con-
version to a device-independent color space (XYZ) before
white balancing, as required for reflection simulation. We
therefore implement in Func. S3 the ACR color process in
which the ColorMatrix is used (cf. Func. S4). Note that
both paths account for the as-shot illuminant because the
ColorMatrix is interpolated according to the as-shot illu-
minant (see Func. S9 and Func. S7).

All supporting DNG SDK functions are listed below.

Function S4 Adobe DNG SDK, CAM to RGB
Input: WhiteXY
Output: Transform to linear RGB

This function is included here as reference to the entire computation of the
color transform to linear RGB. Note, the DNG SDK implements the DNG
Spec. [1]. It uses the ForwardMatrix when it is available, and otherwise
uses the CameraMatrix. In this work we use only the CameraMatrix,
since this supports white balancing after conversion to XYZ.

1: See dng color spec.cpp:573-609.

Function S5 Adobe DNG SDK, get Stage3BlackLevel
Input: A DNG file
Output: The black level

The Stage-3 black level is not stored in the DNG EXIF header. It is a global
scalar offset that remains after spatially varying black levels have been
removed by parsing and applying the black level tags. By default, the DNG
SDK Stage-3 image has a black level of zero, and negative noise values
have been clipped to zero. In this work, we adopt that convention and clip
the negative noise for simplicity. Clipping can however be disabled, and the
non-zero Stage-3 black level can be recovered with a minor modification to
the dng validate binary, described below. The black level can then be
read from the printed output of dng validate when the stage-3 image is
extracted with the -3 option.

1: return true for SupportsPreservedBlackLevels
{dng mosaic info.cpp:2014}

2: return true for SupportsPreservedBlackLevels
{dng negative.cpp:5814}

3: printf((uint16) negative->Stage3BlackLevel())

{dng validate.cpp:293}

Function S6 Adobe DNG SDK, recover saturated highlights
Input: An image in camera color space
Output: Image with clipped higlights repaired
1: Compute CameraWhite

{dng color spec.cpp:548-568}
2: return ∀c,min(c, CameraWhite)

{dng render.cpp:1785→ dng reference.cpp:1389}

Function S7 Adobe DNG SDK, FindXYZtoCamera
Input: White point XY
Output: Matrix XYZ to CAM

1: See dng color spec.cpp:541

{In practice, calls FindXYZtoCamera SingleOrDual.}

Function S8 Adobe DNG SDK, NeutralToXY (projected, cf.
SDK Func. S10)
Input: An AWB white point in camera color space.
Output: XYZ to CAM awb and WhiteXY awb

1: for all kelvins K do {plausible kelvin values}
2: Compute the XY coordinate of K. {SDK Func. S15}
3: Compute the transform XYZ to CAM from XY. {SDK Func. S7}
4: Compute the XYZ coordinate of XY. {SDK Func. S16}
5: Project the XYZ coordinate into camera color using XYZ to CAM.
6: if the projected XYZ is closer to the AWB point than previous values

then
7: Save XY
8: end if
9: end for

10: return the saved XY value and its associated XYZ to CAM matrix.

Function S9 Adobe DNG SDK, computing WhiteXY and
CameraWhite
Input: DNG AsShotXY XOR AsShotNeutral {All DNGs have one xor
the other.}
Output: White point in XY
1: Compute WhiteXY. {dng render.cpp:892,899}

Function S10 Adobe DNG SDK, NeutralToXY
Input: DNG AsShotNeutral value
Output: An XY coordinate
1: See dng color spec.cpp:659

Function S11 Adobe DNG SDK, compute XYZ to sRGB

Input: An XY white point, XYPoint.
Output: Matrix XYZ to sRGB.
1: Get the transform XYZ D50 to sRGB. {SDK Func. S12}
2: Get the D50 XY coordinate XY D50. {SDK Func. S14}
3: Compute matrix XYZ to XYZ D50 using XY D50 and XYPoint.

{SDK Func. S13}
4: return XYZ D50 to sRGB · XYZ to XYZ D50

Function S12 Adobe DNG SDK, get XYZ D50 to sRGB
Input: None
Output: The transform from XYZ D50 to linear sRGB.

1: See dng color space.cpp:254, which specifies the inverse matrix.

Function S13 Adobe DNG SDK, MapWhiteMatrix
Input: Two white points, w1 to w2.
Output: Bradford adaptation matrix.
1: See dng color spec.cpp:22.

Function S14 Adobe DNG SDK, D50 xy coord
Input: None
Output: XY coordinate of the D50 illuminant
1: See dng xy coord.h:145.

Function S15 Adobe DNG SDK, Get xy coord.
Input: A scalar temperature value, K.
Output: An XY coordinate.
1: See dng temperature.cpp:173.

Function S16 Adobe DNG SDK, XYtoXYZ.
Input: An XY vaue.
Output: An XYZ value
1: See dng xy coord.cpp:47.

Function S17 Adobe DNG SDK, sRGB to linear sRGB.
Input: A gamma compressed sRGB value
Output: A linear sRGB value
1: See dng color space.cpp:34.

	Introduction
	Prior work
	Reflection synthesis
	Photometric reflection synthesis
	Geometric reflection synthesis
	The contextual photo

	Reflection removal
	Base model
	Upsampler

	Results
	Reflection simulation
	Base reflection removal
	Upsampling
	Reflection editing

	Conclusion
	Photometric reflection synthesis
	White balancing

	Geometric reflection synthesis
	Fresnel attenuation
	Camera projection
	Defocus blur
	HDR Environment sampling
	Double reflection

	The contextual photo
	Data collection
	Mixture search
	Source images
	Simulation settings

	Reflection removal
	Base model
	Upsampler

	Results
	Evaluation methods
	Base model comparisons
	Upsampler comparisons
	Editing reflections

	Adobe Camera RAW, DNG SDK

