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A. Implementation Details
A.1. Models

Visualizations of model configurations. In Sec. 3.2,
we explain how we gradually remove task-specific compo-
nents. We visualize the architectures of the resulting in-
termediate configurations in Fig. A. Here, the subscript F;
indicates that the features have a resolution of % of the input
image. The visualized model numbers correspond to those
reported in Tab. 1.

Libraries. For Mask2Former [5], we use the implemen-
tation of Huggingface Transformers [23]. For pre-
trained models, we use t imm [22].

Pre-trained models. In Tab. A, we specify the timm
model weights that we use for the experiments in this work.
To support a patch size of 16 x 16 and different input sizes,
we resize the patch embedding kernel and positional em-
beddings of pre-trained models following the FlexiViT [2]
implementation of timm. Specifically, the patch embed-
ding kernel is resized to a 16 x 16 patch size by approxi-
mately inverting the effect of patch resizing. The positional
embeddings are resized to the required token grid size by
using bicubic interpolation. The patch embedding kernel
and positional embeddings are resized prior to fine-tuning,
and keep the same size during fine-tuning.

Queries. In accordance with Mask2Former [5], the mod-
els for panoptic and instance segmentation use K = 200
queries, while the models for semantic segmentation use
K = 100 queries. For ViT-S and ViT-B we use Ly = 3,
for ViT-L we use Lo = 4, and for ViT-g we use Lo = 5.
For EoMT, adding 200 tokens to a model that processes
640 x 640 images with a 16 x 16 patch size results in an
increase of 12.5% of the tokens processed by a ViT block,
but only for the last Lo ViT blocks. As L1 = 20 and Lo = 4
for ViT-L, the total number of tokens processed in the entire
ViT increases by only 2.1%.

A.2. Training

Augmentation. During training, we apply the same data
augmentation techniques as used by Mask2Former [5].
Specifically, training images undergo random horizontal
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Figure A. Removing task-specific components. We visualize the
architectures of the resulting intermediate configurations.

flipping, random scale jittering, padding if necessary, and
random cropping. Random color jittering is additionally
applied for ADE20K [24] and Cityscapes [6]. For panop-
tic and instance segmentation, we use large-scale jitter [11]
(between 0.1x and 2.0x), and for semantic segmentation



Model Pre-training t imm model

ViT-g DINOvV2 [7, 19] vit_giant_patchl4_reg4_dinov2

ViT-L DINOvV2 [7, 19] vit_large_patchl4_reg4_dinov2

ViT-B DINOvV2 [7, 19] vit_base_patchl4_reg4_dinov2

ViT-S DINOv2 [7, 19] vit_small_patchl4_reg4_dinov2

ViT-L EVA-02 [10] eva02_large_patchl4.224 .mimm38m

ViT-L DeiT-1II (ImageNet-21K) [8, 20] deit3_large_patchl6.384.fb_in22k_ft_inlk
ViT-L DeiT-1II (ImageNet-1K) [8, 20] deit3_large_patchl6.384.fb_inlk

Table A. Model specification. For each ViT backbone [9] used in this work, we specify the t imm model [22] that we use.

Panoptic Quality (PQ) Average Precision (AP)

Method Params - GFLOPs  FPS Al Things  Swff All Large  Medium  Small
(0) ViT-Adapter + Mask2Former ~ 349M 830 29 57.1 62.7 48.7 47.6 73.2 534 234
(1) » w/o ViT-Adapter 342M 700 36 56.7 62.3 48.3 46.9 72.7 52.9 22.7
(2) - w/o Pixel decoder 337M 685 62 56.9 62.3 48.6 46.8 73.1 52.6 22.1
(3) b w/o Multi-scale 328M 673 64 56.7 62.2 48.4 46.2 73.1 52.3 21.4
(C)) » w/o Transformer decoder 316M 828 61 56.2 61.4 48.4 45.6 72.1 51.4 20.8
(5) > w/o Masking = EoMT 316M 669 128 56.0 61.2 48.2 45.2 72.2 51.0 20.3

Table B. From ViT-Adapter + Mask2Former to EoOMT in detail. Evaluated on COCO val2017.

we use normal-scale jitter (between 0.5x and 2.0 x).

Loss function. To supervise our models, we adopt the same
loss function as Mask2Former [5]. Specifically, across all
tasks and datasets, we use the cross-entropy (CE) loss for
the class logits, and the binary-cross entropy (BCE) and the
Dice loss [17] for the mask logits. The individual losses are
weighted using scalars, resulting in the total loss function:

Etot = Abceﬁbce + )\diceﬁdice + >\ce£ce7 (1)
where Apce, Adice, and A¢e are set to 5.0, 5.0, and 2.0, respec-
tively, following Mask2Former [5].

Learning rate warm-up. We use a two-stage linear learn-
ing rate warm-up for all models. In practice, we first warm-
up the randomly initialized parameters for 500 iterations,
while keeping the pre-trained parameters frozen. After 500
iterations, we warm-up the pre-trained parameters for 1000
iterations. In both cases, the initial learning rate is set to 0.

A.3. Evaluation

Image processing. For panoptic and instance segmenta-
tion, we use padded inference, resizing the longer side of
the image to the input size, and padding the shorter side
with zeros to create a square image. For semantic segmen-
tation, we apply windowed inference, resizing the shorter
side of the image to the input size, and processing the image
through the model in several proportionally spaced square
crops, in a sliding-window manner [ 14].

Efficiency measurements. For existing works, we re-
port FLOPs from the respective papers but measure FPS
the same way that we measure it for our models, on the
same hardware. For ViT-Adapter + M2F and our models,
we calculate the FLOPs ourselves. When measuring FPS,
torch.compile [1] is disabled for Mask2Former [5]
with Swin-L [16] on ADE20K [24] due to compilation er-
rors. On COCO [15], torch.compile only yields a

small speedup for this model (< 10%). Additionally, mixed
precision is not supported for OneFormer [13] with DiNAT-
L [12], thus we use full precision here.

Token merging. For our token merging experiment in
Sec. 4.3 and Tab. 9, we evaluate the throughput of the model
in images per second, following existing work for token
merging [3, 18]. This means that we use a batch size of
32, apply ALGM [18] for token merging, and report the
number of images that are processed per second, averaged
over the entire validation set. ALGM adaptively determines
the number of tokens that should be merged per image,
based on image complexity. To allow batch processing, we
identify the lowest number of mergeable tokens per image
across the batch according to the ALGM token merging cri-
terion, and use that number of merged tokens for all images
in the batch.

Importantly, ALGM is applied only during inference.
Thus, the throughput improvement in Tab. 9 is achieved
simply by applying ALGM to EoMT and processing
batches of images, with no additional training required.

B. Detailed Experimental Analysis

From ViT-Adapter + M2F to EoMT in detail. In Tab. B,
we provide more detailed results on the impact of the re-
moval of task-specific components on both panoptic and
instance segmentation on COCO [15]. For panoptic seg-
mentation, we not only report the overall Panoptic Quality
(PQ), but also separately the PQ for countable thing classes
(PQ™) and uncountable stuff classes (PQ™). Similarly, for
instance segmentation, we separately report AP for large
(APY), medium (APM), and small objects (APS).

General applicability of mask annealing. In Tab. C, we
assess the effect of our mask annealing strategy for both
EoMT and the ViT-Adapter + M2F baseline. The results
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Figure B. Qualitative comparison of out-of-distribution (OOD) confidence estimation. EoMT reliably assigns low confidence to the
full OOD object, while ViT-Adapter + M2F only does so partially. Darker colors indicate lower confidence. Trained on Cityscapes train [6],

evaluated on BRAVO [21].

. Panoptic Quality (PQ) Method Backbone Pre-training AUPRCqop
Training Inference - — -
EoMT  VIiT-Ad. + M2F M2F [5] Swin-L [16] IN21K 56.8
v Masking v Masking 56.2 57.1 M2F:c [5] V%T—Adapter—Li [4] DINOv2 68.7
X wloMasking X w/o Masking 53.2430 54,001 EoMT (Ours) ViT-L [9] DINOv2 89.7
/> X Mask annealing X w/o Masking 56.0+02 56.8+103

Table C. Mask annealing. Effective for both EoMT and ViT-
Adapter + M2F [4, 5]. When never masking, intermediate masks
are not predicted or supervised. Evaluated on COCO val2017 [15].

# Blocks (L2) Params GFLOPs FPS PQ
9 316 688 126 55.7
6 316 676 127 55.7
4 316 669 128 56.0
2 316 660 128 55.4

Table D. Number of blocks that process queries. The model
with Ly = 4 achieves the best PQ, while FPS is not significantly
affected by changing L». Evaluated on COCO val2017 [15].

demonstrate the general applicability of mask annealing, as
it is also effective for ViT-Adapter + M2F.

Number of blocks that process queries. In Tab. D, we
examine the impact of varying Lo, i.e., the number of ViT
blocks in EOMT that process queries as well as patch to-
kens. EOMT demonstrates stable performance across differ-
ent configurations, with the highest PQ for ViT-L observed
around Lo = 4, while the prediction speed in FPS is not
significantly affected by changing Ls. Consequently, we
set Lo = 4 as the default configuration for ViT-L.

C. Out-of-distribution Confidence Estimation

In Sec. 4.3, we discuss the out-of-distribution (OOD) gen-
eralization capabilities of EoMT. There, we show that
DINOv2-based models, such as EOMT, significantly outper-
form non-ViT-based models such as Swin [16] in OOD gen-
eralization despite similar in-distribution (ID) performance.

Next, we also assess how well different models distin-
guish OOD regions from ID regions with their confidence
scores. OOD regions, as defined in the BRAVO [21] bench-
mark, refer to novel object classes that were not present in
the training data. We report the AUPRCgop metric, which
quantifies the model’s ability to assign lower confidence to

Table E. Quantitative comparison of out-of-distribution (OOD)
confidence estimation. EoMT achieves the highest AUPRCoop,
demonstrating its superior confidence estimation. Trained on
Cityscapes train [6], evaluated on BRAVO [21]. Our re-
implementation.

these unseen objects, ensuring they can be correctly identi-
fied as OOD.

As shown in Tab. E, EOMT achieves an AUPRCpop of
89.7, significantly outperforming ViT-Adapter + M2F [4, 5]
with a score of 68.7 and Swin [16] + M2F with a score
of 56.8. The visualization in Fig. B further highlights that
EoMT consistently assigns low confidence to the OOD ob-
ject while maintaining high confidence for ID regions. In
contrast, ViT-Adapter + M2F [4, 5] fails to reliably assign
low confidence to all OOD pixels.

D. Qualitative Examples

In Fig. C we visualize predictions of ViT-Adapter + M2F [4,
5] and EoMT for panoptic segmentation on COCO [15].



(2) Ground-truth annotations
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Figure C. Qualitative examples for panoptic segmentation on COCO [15]. Using DINOv2-g [19] and a 1280 x 1280 input size.
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