
NoT: Federated Unlearning via Weight Negation

Supplementary Material

9. Co-Adaptation

The term co-adaptation originates from evolutionary biol-
ogy and describes phenomena where living entities—from
proteins to entire species—are not merely adapted in isola-
tion but within an environment composed of other living en-
tities. The entities are adapted to an ecological niche, which
itself evolves through the adaptations of other entities. As
a result, multiple living entities adapt together through co-
evolution, leading to a state of co-adaptation [15].

In computer science, the term has been adopted more
loosely to describe scenarios where different agents—such
as human-machine interfaces [41], robots [55], software
components [33], network layers [53], and artificial neurons
[24, 62]—are not considered optimal in isolation but as part
of a multi-agent system.

Our use of this terminology requires further clarification
beyond this intuition. A typical neural network trained via
gradient descent to minimize a loss function is considered
optimal with respect to the given loss. This optimality is de-
fined over the parameter space of a fixed architecture. How-
ever, in our work, we perturb models layer-wise rather than
as a whole. The optimality of an individual layer is not
meaningful in isolation because it does not minimize the
loss independently; instead, it contributes to loss minimiza-
tion in conjunction with other layers.

In our work, we manipulate parameters from multiple
optimal models, introducing the following definitions:

Definition 3 (Grafting). Let N θ denote a model with a set
of layers L , where θ(i) represents a set of parameters.

A grafting of
(
N θ(i)

)
i∈I

is a set of parameters θ such

that:

∀ℓ ∈ L ,∃i ∈ I, θℓ = θ
(i)
ℓ . (6)

Definition 4 (Co-Adapted Layers). Let L be a loss, N θ a
model with layer set L , and θ a grafting of models.

Layer parameters θℓ for ℓ ∈ L are said to be co-adapted
if N θ is optimal with respect to L.

By abuse of language, we refer to the layers themselves
as co-adapted if their parameters are co-adapted.

If the grafting originates from a singleton of an optimal
model (|I| = 1), the layers are trivially co-adapted. In our
study, we perturb the layers of a model to ensure layer-wise
optimality is preserved, while creating a non-optimal graft-
ing of multiple optimal models. This process leads to layers
losing their co-adaptation.

10. NoT Algorithm
Algorithm 1 details our proposed unlearning method, which
leverages weight negation.
Algorithm 1 NoT

1: Input: Initialize global model N . Each client k ∈
P := {1, ..., n} has data Dk. Current round is denoted
as τ , number of local iterations I , and learning rate η.

2: \\ Client Side
3: for client k ∈ P do
4: Client k decides a target set Dk

u ⊂ Dk and defines
Dk

r := Dk \Dk
u.

5: if client k has Dk
u ̸= ∅ then

6: Send unlearning request to server.
7: \\ Server Side
8: if unlearning request from clients K ⊂ P then
9: Negate parameters of selected layers in N .

10: for communication round τ = 1, · · · , T do
11: M = {}
12: for client k ∈ P \ K do
13: M[k]← CLIENTUPDATE(N , k, I).
14: N ← AggregateM
15: \\ Client Side
16: function CLIENTUPDATE(N , k, I)
17: for local iteration i = 1, ..., I do ▷ Local training
18: for minibatch Bk ∈ local data Dk

r do
19: N ← N − η∇LBk(N)

20: return N

11. PyTorch Code
The PyTorch implementation of the main component of
NoT, which applies layer-wise negation to a model.

1 import torch
2

3 def negate_layers(model, layer_indicies=[0]):
4 ’’’
5 Negates the layer-wise parameters of a model

by layer indicies
6 Args:
7 model: The model that needs to be

unlearned
8 layer_indicies: Layer indicies to be

negated
9 returns ’unlearned model’

10 ’’’
11 with torch.no_grad():
12 for layer_indx, param in enumerate(model.

parameters()):
13 if layer_indx in layer_indicies:
14 param.data = -1 * param.data
15 return model

12. Extra Theoretical Results and Mathemati-
cal Proofs

12.1. Unlearning Time Lower Bound
Theorem 5. Let N θ be a model, and let (Dr, Du) denote
a pair of datasets. Given an initial parameter set θ0 ∈ Θ,
assume N θ0

is trained using Stochastic Gradient Langevin
Descent (SGLD) to minimize LDr

starting from θ0. The
parameter evolution is described as: dθt = −∇θtLdt +
Σ(θt, t)·dW , where training time t ≥ 0. Then the following
holds:

t ≥ E(δ(θt)− (θ0))2

L2 [|LDr (θ
0)− ELDr (θ

t)|+A]
, (7)

where:

L := sup
θ1 ̸=θ2

|δ(θ1)− δ(θ2)|
∥θ1 − θ2∥

(8)

A =
1

2

∫ t

0

∣∣Tr (Σ(θs, s)2 · ∇2LDr (θ
s)
)∣∣ ds (9)

Proof. To begin with, let us prove the formula in the case
of Deterministic Gradient Descent (Σ = 0). We have:

dθt = −∇LDr
(θt)dt (10)

dLDr
(θt) = −∇LDr

(θt) · ∇LDr
(θt)dt (11)

= −∥∇LDr
(θt)∥2dt (12)

∥δ(θt)− δ(θ0)∥ ≤ ∥θt − θ0∥∥δ∥Lip (13)

where ∥δ∥Lip = supθ1 ̸=θ2
|δ(θ1)−δ(θ2)|

∥θ1−θ2∥ .
Then,

∥θt − θ0∥ = (θt − θ0) · (θt − θ0)
∥(θt − θ0)∥

(14)

=

∫ t

0

(−∇LDr
(θs)) · (θt − θ0)

∥(θt − θ0)∥
ds (15)

≤

√√√√√√
∫ t

0

∥∇LDr
(θs)∥2ds︸ ︷︷ ︸

=|LDr (θ
t)−LDr (θ

0)|

∫ t

0

∥∥∥∥ θt − θ0)
∥(θt − θ0)∥

∥∥∥∥2 ds︸ ︷︷ ︸
=t

(16)

Therefore,

∥θt − θ0∥2 ≤ t|LDr
(θt)− LDr

(θ0)|, (17)

and then:

∥δ(θt)− δ(θ0)∥
∥δ∥Lip|LDr

(θt)− LDr
(θ0)|

≤ t. (18)

The third line is obtained applying Cauchy-Schwarz in-
equality in the Hilbert space L2([0, t],Rn). The result is

proved for Σ = 0. When Σ ̸= 0, we have:

dθt = −∇LDr (θ
t)dt+Σ(θt, t) · dW (19)

dLDr
(θt) = −∥∇LDr

(θt)∥2dt+∇LDr
· Σ(θt, t) · dW

+
1

2
Tr

(
Σ(θt, t)2 · ∇2LDr

(θt)
)
dt (20)

∥δ(θt)− δ(θ0)∥ ≤ ∥θt − θ0∥ × ∥δ∥Lip (21)

Where the second line is obtained from the first applying
Itô Formula (Chapter IV in [50]). The computation then un-
folds the same way, then taking the expectancy and absolute
value.

12.2. Activation Distance Maximization
Maximizing the distance d between activations serves as a
straightforward heuristic for increasing loss. Specifically,
for a layer ℓ activated by a function σ, denoting by ℓ′ a re-
placement for ℓ, we aim to maximize d(σℓx, σℓ′x) while
ensuring that ∥σℓx∥ ≃ ∥σℓ′x∥. We deem reasonable to
assume that the later is approximately satisfied: for wide
networks ℓx is close to a centered Gaussian distribution at
initialization and our main case of interest is negation which
preserves such Gaussian distributions. Let us consider spe-
cific cases for different activation functions.
1. ReLU Activation (σ : a 7→ max(0, a)): For any y0 ∈

Rn
+, if at least one coordinate of y0 is non-zero, then

max
∥y∥=∥y0∥,y≥0

d(y0, y)
2 = 2∥y0∥2. (22)

If all coordinates of y0 are positive, then

max
∥y∥=∥y0∥,y≥0

d(y0, y)
2 = ∥y0∥2. (23)

The maximum is reached when y is orthogonal to y0.
Thus, the optimal scenario involves orthogonalizing the
post-nonlinearity activations.

2. Binary Step Function (σ : a 7→ 1a>0 +
1
21a=0): this

function approximates sigmoid and similar variations.
Here, the maximum distance is achieved by applying the
Boolean negation to y0. Notably, not σ(ℓx) = σ(−ℓx),
setting ℓ′ = −ℓ ensures the desired property.7

3. Hyperbolic Tangent (or any Odd Activation Func-
tion): For such activations, the maximum distance is at-
tained by y = −y0. Since ∀x, ∥σ(ℓx)∥ = ∥σ(−ℓx)∥ for
odd functions, setting ℓ′ = −ℓ satisfies the requirement.
Regarding the ReLU case, we have the following Lemma

which implies Theorem 2:

Lemma 1. Denote σ(x) := max(x, 0) and let Y ∈ Rn be
a random vector. Assume E

∣∣∥σ(Y)∥2 − ∥σ(−Y)∥2
∣∣ ≤ ε

7By extension of the boolean operator we define not(x) := 1− x

then:

E∥σ(Y)−σ(−Y)∥2 ≥ E
[

max
y≥0,∥y∥=∥σ(Y)∥

d(σ(Y), y)2
]
−ε.

(24)

Proof.

E∥σ(Y)− σ(−Y)∥2 = E1Y≥0

[
∥σ(Y)∥2 + ∥σ(−Y)∥2

]
+E1Y≱0

[
∥σ(Y)∥2 + ∥σ(−Y)∥2

]
(25)

Define I1, I2 the terms on the right hand side. We have:

I1 = E1Y≥0

[
∥σ(Y)∥2 + ∥σ(−Y)∥2

]
(26)

= E1Y≥0∥σ(Y)∥2 (27)
= E1Y≥0 max

∥y∥=∥σ(Y)∥,y≥0
d(σ(Y), y)2 (28)

(29)
I2 = E1Y≱0

[
∥σ(Y)∥2 + ∥σ(−Y)∥2

]
(30)

= E1Y≱0

[
∥σ(−Y)∥2 − ∥σ(Y)∥2

]
+E1Y≱02∥σ(Y)∥2 (31)

≥ E1Y≱0 max
∥y∥=∥σ(Y)∥,y≥0

d(σ(Y), y)2 − ε (32)

Substituting Equation (29) and Equation (32) in Equation
(25) yields the desired result.

Alternative perturbations approaches:
• Orthogonal Linear Transformations: Applying an

orthogonal linear transformation to ℓ post-activation seems
promising. However, ensuring the transform works well
across all activation values ℓx is generally infeasible if the
activation distribution contains a basis of the output vector
space.
•Weight Randomization: Randomizing the weights of

a dense or convolution layer (ℓ) produces ℓ′. If X being
the random variable input to the layer, the random vari-
ables ℓX and ℓ′X have low correlation, especially in high
dimensions. Therefore, we expect the expected distance
Ed(σℓx, σℓ′x)2 to be close to Ed(σY1, σY2)2, where Y1 and
Y2 are independent. However, this approach is less effec-
tive, as demonstrated in the following lemma:

Lemma 2. Denote σ(x) := max(x, 0) and let Y1, Y2 be
IID standard Gaussian random arrays.

E∥σ(Y1)−σ(Y2)∥2 = αE
[

max
y≥0,∥y∥=∥σ(Y1)∥

d(σ(Y1), y)
2

]
,

(33)
with α =

(
1− 1

π

)
∈ [0, 1[.

12.3. Jacobian Bound
In this section, we only consider feedforward models con-
sisting of dense layers, concatenations, splits and non-
trainable activation functions. By feedforward, we mean
that the computational graph is Directed Acyclic, not nec-
essarily sequential.

The assumption on layers is not very restrictive: one may
formally rewrite most common architectures using only
dense layers with tied weights. We write bounds assuming
non-tied weights, but they may be generalized, noticing that
the gradient with respect to some tied weights is the sum of
the tied layers of the untied gradients.

LetE,F be finite dimensional normed spaces. Let us re-
call that the Sobolev space W k,∞(E,F) is the set of func-
tion E → F whose derivatives up to order k are L∞. De-
fine W k,∞

1 (E,F) the set of functions whose differential is
in W k−1,∞(E,E∗ ⊗ F)). For functions defined on a con-
vex open subset of a finite-dimensional normed space E to
another F , we define the semi-norms:

∥f∥Lip := sup
x ̸=y

∥f(x)− f(y)∥
∥x− y∥

, (34)

For functions in Lip + L∞ we define:

∥f∥Lip,∞ := inf
g+h=f

max (∥g∥Lip; 2∥h∥L∞) . (35)

All models are considered as a function of the variable x,
so Lipchitz and L∞ norms are computed with respect to
the x input, not the parameters θ. Let us begin with some
elementary bounds.

Lemma 3. Let E,F be two finite dimensional normed
spaces and let U be an open subset of E. Let f : U → F
and let P(U),P(F) be the space of probability distribu-
tions having a first moment on U and F respectively (for
the Borel σ-algebra). Then f∗ : P(U)→ P(F), µ 7→ f#µ
is ∥f∥Lip-Lipchitz for the metric W and 1-Lipchitz for the
metric TV.

Proof. On the one hand, for any coupling π of µ, ν we have:

W(f#µ, f#ν) ≤ E(x,y)∼π∥f(x)− f(y)∥ (36)
≤ ∥f∥LipE(x,y)∼π∥x− y∥ (37)

We may take π so that E(x,y)∼π∥x− y∥ =W(µ, ν).
On the other hand, for any coupling π of µ, ν:

TV(f#µ, f#ν) ≤ E(x,y)∼π1f(x) ̸=f(y) (38)
≤ E(x,y)∼π1x̸=y (39)

We may take π so that E(x,y)∼π1x̸=y = TV(µ, ν).

Lemma 4. Let f ∈ L∞(U , F) for some U ⊂ E open. Then

f∗ : (P(U),TV)→ (P(F),W) (40)

is 2∥f∥∞-Lipchitz.

Proof. See proof of Lemma 7.

Definition 5. Let (A,≤) be a partially ordered set (poset).
Define the length of A as the longest chain of (A,≤):

len(A) := max{|γ| : totally ordered γ ⊂ A}. (41)

We also define the diameter of A as the number of distinct
maximal chains in A:

Λ(A) := |Γ| ; (42)
Γ(L) := {γ ⊂ A | γ totally ordered and maximal}.

Definition 6. Let N θ be a feedforward neural net of layer
poset (L ,≤). Define

∥θ∥2,L := max
γ∈Γ(L)

 |γ|∏
i=1

∥θγi
∥2

1/|γ|

. (43)

Lemma 5. Let N θ be a feedforward neural net of layer
poset (L ,≤) and activation function set Σ ⊂ Lip. Assume
that layers are either dense, split, or concatenation, then

∥N θ∥Lip ≤ Λ(L)max (∥Σ∥Lip∥θ∥2,L , 1)len(L) (44)

with ∥Σ∥Lip := maxσ∈Σ ∥σ∥Lip.

Proof. Under these assumptions, the output of network may
be rewritten as a projection of the concatenation of the out-
put of sequential networks following the layers along max-
imal chains. Therefore, with Γ the set of maximal chains of
L , for any x ∈ Rdin

∥N θ∥Lip ≤
∑
γ∈Γ

∥σγ|γ|θγ|γ|σγ|γ|−1
θγ|γ|−1

· · ·σγ1
θγ1
∥Lip

(45)

≤
∑
γ∈Γ

(
∥σγ|γ|∥Lip∥θγ|γ|∥Lip∥σγ|γ|−1

∥Lip

×∥θγ|γ|−1
∥Lip · · · ∥σγ1

∥Lip∥θγ1
∥Lip

)
(46)

≤
∑
γ∈Γ

∥Σ∥|γ|Lip

|γ|∏
i=1

∥θγi
∥2 (47)

≤
∑
γ∈Γ

∥Σ∥|γ|Lip∥θ∥
|γ|
2,L (48)

≤ |Γ|max (1, ∥Σ∥Lip∥θ∥2,L)
len(L)

. (49)

The results follows for Λ(L) := |Γ|.

Lemma 6. Let N θ be a feedforward neural net of layer
poset (L ,≤) and activation function set Σ ⊂ Lip. Assume
N θ is defined on some open bounded domain U and assume

that layers are either dense, split, or concatenation, then for
any layer ℓ:

∥∇θℓN θ∥∞ ≤ sup
x∈U
∥x∥Λ(L)max (∥Σ∥Lip∥θ∥2,L , 1)len(L)

(50)
with ∥Σ∥Lip := maxσ∈Σ ∥σ∥Lip.

Proof. Proceed as for Lemma 5.

Theorem 6. AssumeN θ is given by a Lipchitz feedforward
neural network having also Lipchitz derivative of the layer
set L and let ≤ be the order relation on L induced by the
computational graph. Let Jθ

ℓ := ∇θℓN θ(X) be its Jaco-
bian on X ∼ D for layer ℓ ∈ L , and let Y be the con-
catenation of the outputs of the layers ℓ ∈ Lneg. Assume
that Lneg is a Cauchy domain of L (i.e., Lneg intersects
exactly once every maximal totally ordered subsets of L),
then:

W
(
Jθ
ℓ ; J

θ′

ℓ

)
≤Aℓ TV(Y−;−Y−), ∀ℓ > Lneg

(51)

W
(
ϵJθ

ℓ ; J
θ′

ℓ

)
≤Aℓ TV((X,Y−); (X,−Y−)), ∀ℓ ≤ Lneg

(52)

where ϵ = (−1)ℓ/∈Lneg ,W and TV are the Wasserstein and
total variation distances, and (Aℓ)ℓ∈L are positive con-
stants depending on θ and the support of X .

Proof. Define θ ̸=neg = (θℓ)ℓ/∈Lneg
and for layer subset

L1 ≤ L1 denote by N θ
L1→L2

the sub-model of N θ tak-
ing as input the concatenation of the outputs of layers in L1

and outputs the concatenation of the output of layers in L2.
We take the convention that if L1 = ∅means the input is the
input of the modelN θ and L2 = ∅, the output is the output
of modelN θ. With this convention,N θ

∅→∅ = N θ. The sub-
modelN θ

L1→L2
is well defined if L1 is a Cauchy subset but

may not be otherwise. Note that differentiation may only be
taken with respect to the weights of a dense layer since split,
concatenation and activation functions don’t have weights
under our assumptions.

First, let ℓ > Lneg. We denote by X ′ a random variable
having the same law as X but with a coupling to X to be

chosen later. Since Lneg is a Cauchy domain:

∥Jθ
ℓ − Jθ′

ℓ ∥ :=
∥∥∥∇θℓ

(
N θ

Lneg→∅N
θ
∅→Lneg

)∣∣∣
x=X

− ∇θℓ

(
N θ′

Lneg→∅N
θ′

∅→Lneg

)∣∣∣
x=X′

∥∥∥
(53)

=

∥∥∥∥∥(∇θℓN θ
Lneg→∅

)∣∣∣
x=N θ

∅→Lneg
(X)

−
(
∇θℓ(N θ

Lneg→∅

)∣∣∣
x=N θ′

∅→Lneg
(X′)

∥∥∥∥∥
(54)

By Lemmata 3 and 4 we get:

W
(
Jθ
ℓ ; Jθ′

ℓ

)
≤ 2∥∇θℓN θ′

Lneg→∅∥∞ (55)

× TV(N θ
∅→Lneg

(X) ; N θ′

∅→Lneg
(X ′))

(56)

= 2∥∇θℓN θ
Lneg→∅∥∞TV(Y−;−Y−) (57)

Then, by Lemma 6, we may set:

Aℓ = 2

(
sup
x∈U
∥x∥

)
Λ(L +

neg)max (∥Σ∥Lip∥θ∥2,L , 1)len(L
+
neg)

(58)
with L +

neg := {ℓ′ ∈ L | ℓ′ > Lneg}.
Second, let ℓ < Lneg and proceed in the same way:

∥Jθ
ℓ + Jθ′

ℓ ∥ :=
∥∥∥∇θℓ

(
N θ

Lneg→∅N
θ
∅→Lneg

)
(X)

+ ∇θℓ

(
N θ′

Lneg→∅N
θ′

∅→Lneg

)
(X ′)

∥∥∥
(59)

=

∥∥∥∥∇xN θ
Lneg→∅

∣∣∣
x=Y−

∇θℓN θ
∅→Lneg

(X)

− ∇xN θ
Lneg→∅

∣∣∣
x=−Y ′

−

∇θℓN θ
∅→Lneg

(X ′)

∥∥∥∥
(60)

Beware that this time, the terms can not be rewritten as a
function of only Y−. We thus apply Lemma 3 to the whole
term as a function of the couple variable (X,Y−):

(x0, y0) 7→
(
∇xN θ

Lneg→∅

∣∣∣
x=y0

)(
∇θℓ N θ

∅→Lneg

∣∣∣
x=x0

)
.

(61)
Then, Lemmata 6 and 5, allow to conclude the same way

with:

Aℓ =

(
sup
x∈U
∥x∥

)
Λ(L)max (∥Σ∥Lip∥θ∥2,L , 1)len(L)

(62)
Finally, the case ℓ ∈ Lneg is treated the same way.

One may also prove similar bounds replacing the total
variation by Wasserstein distance. However, the constant
Aℓ then depends on the Lipchitz norm of the derivative of
the activation functions. If the activation functions do not
have Lipchitz derivative, total variation is necessary as we
only have the following Lemma to control the Wasserstein
distance of output distributions.

Lemma 7. Let f ∈ Lip(U , F) + L∞(U , F) for some U ⊂
E open. Then,

f∗ : (P(U),W +TV)→ (P(F),W) (63)

is ∥f∥Lip,∞-Lipchitz.

Proof. For any coupling π of µ, ν and any decomposition
f = g + h with g ∈W 1,∞

1 and h ∈W0,LBV, with (x, y) ∼
π we have:

E∥f(x)− f(y)∥ ≤ E [∥g(x)− g(y)∥+ ∥h(x)− h(y)∥]
(64)

≤ E [∥g∥Lip∥x− y∥+ 1x̸=y∥h∥∞]
(65)

Since the inequality is true for any coupling π, we may
choose a coupling of the form π = D#min(µ, ν)+π′ with
D : x 7→ (x, x) and π′ a coupling between (µ − ν)+ and
(µ−ν)−. Here µ∧ν := min

(
dµ

d(µ+ν) ;
dν

d(µ+ν)

)
× (µ+ν)

where the derivative denote the Radon-Nikodym derivative
(see [7] p125). We then have:

E [1x̸=y∥h∥∞] = 2∥h∥∞TV(µ, ν) (66)

and since infπ′ E [∥x− y∥] =W((µ− ν)+, (µ− ν)−).
Taking the infimum over g+h = f and adding TV on both
sides we get:

W(f#µ, f#ν) ≤ inf
f=g+h

(
∥g∥LipW((µ− ν)+ ; (µ− ν)−)

+ (1 + 2∥h∥L∞)TV(µ, ν)) . (67)

Note that by cyclical monotonicity of the optimal transport
plan (see [60] pp79-80), for all positive measures α, β, γ we
haveW(α+ β ; α+ γ) ≥ W(α, β). Therefore,

W(µ, ν) =W (µ ∧ ν + (µ− ν)+ ; µ ∧ ν + (µ− ν)−)
≥ W((µ− ν)+ ; (µ− ν)−) (68)

so,

W(f#µ, f#ν) ≤ inf
f=g+h

max(∥g∥Lip, (1 + 2∥h∥L∞))

× (W(µ ; ν) + TV(µ, ν)) . (69)

Finally,

W(f#µ, f#ν) ≤ (1 + ∥f∥Lip,∞) (W(µ ; ν) + TV(µ, ν)) .
(70)

12.4. Layer-Wise Optimality
We introduce a new metric to quantify how far a layer of
a model is from being effectively pretrained, as discussed
in Section 4.2: how much the layer has to be modified to
become a layer with an optimal set of weights?

Definition 7 (Layer-wise optimality norm). Let N θ denote
a model parameterized by θ ∈ Θ, and let ℓ be a layer of
N θ with parameters θℓ. The layer-wise optimality norm of
layer ℓ is defined as:

∥θ∥∗,ℓ := inf
α∈R+,θ∗∈Θ∗

∥θℓ − αθ∗ℓ ∥2, (71)

where θ∗ represents the set of optimal parameters.
For a Lipchitz transformations σ : Θ→ Θ, acting solely

on layer ℓ, the layer-wise optimality norm of σ is given by:

∥σ∥∗,ℓ := inf
A>0

sup
θ∈Θ

(
∥N σ(θ)∥∗,ℓ −A∥N θ∥∗,ℓ

)
. (72)

Definition 8. LetN θ be a model of layer set L . A Lipchitz
Lipchitz transformations σ : Θ→ Θ is LWO-Lipchitz if:

∥σ∥∗ :=
∑
ℓ∈L

∥σ∥∗,ℓ = 0. (73)

Remarks. ❶ These definitions are meaningful only if
Θ∗ ̸= ∅. Strictly speaking, ∥ · ∥∗,ℓ on Θ is not a norm
but the distance to a subset. ❷ The factor α ensures that
the layer-wise optimality norm remains bounded, and it is
reasonable since such a scaling factor is usually easy to re-
cover via gradient descent. ❸ The norm ∥σ∥∗,ℓ quantifies
how well the transformation σ preserves the optimality of
layer ℓ. LWO-Lipchitz property means σ is Lipchitz for
all the the layer-wise optimality norms. Thus, it preserves
layer-wise optimality quantitatively.

A low layer-wise optimality norm does not guarantee
rapid convergence but implies that the layer can be frozen
while the rest of the model is trained from scratch. Even if
not frozen, it is expected to reduce the effective dimension-
ality of the space explored by gradient descent.

12.4.1. Affine Compensation of Layer Negation.
A key point is that the usual sigmoid-like or odd activation
functions ψ satisfy an algebraic relation:

∀x ∈ R, ψ(−x) + ψ(x) = C. (74)

for some constant C ∈ R.

Lemma 8. Let ℓ1, ℓ2 be two linear layers, and let ψ be an
activation function. If −ℓ1 denotes the layer obtained by
negating the parameters of ℓ1, then:

If ψ satisfies an algebraic relation of the form:

∃a, b, c ∈ R,
(ab ̸= 0 and ∀x ∈ R, aψ(x) + bψ(−x) = c) , (75)

there exists a linear layer ℓ′2 such that:

ℓ2 ◦ ψ ◦ ℓ1 = ℓ′2 ◦ ψ ◦ (−ℓ1). (76)

Furthermore, if ℓ2 is convolutional, then ℓ′2 can also be cho-
sen as convolutional.

Proof. Let a, b, c ∈ R satisfy the property above. Define
ℓ3(x) = c − b

ax. Then ℓ′2 = ℓ2 ◦ ℓ3 satisfies the desired
properties. The layer ℓ′2 is linear and convolutional if ℓ2 is
convolutional.

Theorem 4 is a consequence of the following Theorem.

Theorem 7. The negation perturbation is LWO-Lipchitz if
Lneg is an antichain of the poset L containing no maximal
element, and each ℓ ∈ Lneg is activated by sigmoid-like,
odd, or even functions (e.g., 1>0, tanh, sin, x2).

Proof. Without loss of generality we may assume that Lneg

is a singleton Lneg = {ℓ1}.
Let N θ be a feedforward neural network with a set of

linear or convolution layers L , and let ℓ1 be a layer that
is not the output layer. Denote the subsequent layer by ℓ2,
and assume the activation function ψ of ℓ satisfies: ∀x ∈
R, ψ(x)+ψ(−x) = Cte or ∀x ∈ R, ψ(x)−ψ(−x) = Cte.

For any ε > 0, let (θ∗ℓ)ℓ∈L ∈ Θ∗ such that: ∥θℓ1 −
θ∗ℓ1∥ ≤ ∥N

θ∥∗,ℓ1 + ε. Define θ̃∗ ∈ Θ as follows:

• θ̃∗ℓ = θ∗ℓ for ℓ /∈ {ℓ1, ℓ2};
• θ̃∗ℓ1 = −θ∗ℓ1 ;
• θ̃∗ℓ2 the parameters of the layer given by Lemma 8.
Since:

ℓ2(θ̃
∗
ℓ2) ◦ ψ ◦ ℓ(θ̃

∗
ℓ1) = ℓ2(θ

∗
ℓ2) ◦ ψ ◦ ℓ1(θ

∗
ℓ1), (77)

we deduce that N θ∗
= N θ̃∗

as functions, and hence θ̃∗ ∈
Θ∗. Thus:

∥N σ(θ)∥∗,ℓ1 ≤ ∥σ(θ)ℓ1 − θ̃∗ℓ1∥ (78)
= ∥ − θℓ1 − (−θ∗ℓ1)∥ (79)
= ∥θℓ1 − θ∗ℓ1∥ (80)

≤ ∥N θ∥∗,ℓ1 + ε. (81)

As this inequality holds for all ε > 0, we conclude:
∥N σ(θ)∥∗,ℓ1 ≤ ∥N θ∥∗,ℓ1 . Consequently, ∥σ∥∗,ℓ1 = 0.

13. Empirical Support of Theoretical Analysis
This section presents empirical evidence supporting the hy-
potheses used in the theoretical analysis. Specifically, we
examine the following:
1. CKA Analysis: Demonstrates effective pretraining and

the breaking of co-adaptation.
2. Post-Negation Fine-Tuning: Validates the claim of di-

mensionality reduction during fine-tuning.
3. Unlearning Lower Bound: Evaluates the unlearning

lower bound to show that it is constraining for natural
forgetting.

13.1. Quantitative Unlearning Time Constraint
We aim to assess the accuracy of the proposed unlearning
time lower bound. Recall the derived inequality:

t ≥ E(δ(θt)− δ(θ0))2

∥δ∥2Lip [|LDr (θ
0)− ELDr (θ

t)|+A]
:= tunlearn,

(82)
where tunlearn represents the estimated unlearning time
lower bound.

The goal is not to compute this precisely but to determine
its order of magnitude. Each term in the formula can be
approximated as follows:
• Estimating δ: δ is computable for any model through a

forward pass on both the remaining and forgotten data.
• Estimating δ(θt)− δ(θ0): For a model N θ0

, we use:

|δ(θt)− δ(θ0)| ≥ (1− ε)
∣∣δ(θ∗Retrain)− δ(θ0)

∣∣ , (83)

where θ∗Retrain represents the parameters of a model
trained from scratch on Dr and 0 < ε≪ 1.

• Estimating ∥δ∥Lip: Since ∥δ∥Lip = ∥∇θδ∥∞, we es-
timate it by computing the gradient of LDr

and LDu
at

various θ and taking the supremum of the norm across for
these θ:

∥δ∥Lip ≃ max
b∈Batch

∥∇θδ(θ
b)∥ (84)

For a given training path, we choose to take the supre-
mum of θt at different times. This gives a slightly sharper
bound than taking the maximum across models, as NoT
tends to have larger gradients than the other training.

∥δ∥Lip ≃ max
t∈{t1,··· ,tn}

∥∇θδ(θ
t)∥ (85)

• Estimating |LDr (θ
0)−ELDr (θ

t)|: To estimate the avail-
able loss decrease, we use a lower bound given by:

|LDr
(θ0)− ELDr

(θt)| ≤ |LDr
(θ0)− LDr

(θ∗)|, (86)

where θ∗ is obtained from a model trained from scratch
on Dr for an extended period (e.g., twice as long as the
original training).

Table 3. Comparison of the estimated unlearning bound tunlearn
(right side of Equation (2)).

Dataset
& Model Method tunlearn ↓

Est. Comp. Cost
(FLOPs) ↓

CIFAR-10
CNN

FT 2.46 1.51e14

NoT 0.04 2.33e12

CIFAR-10
ResNet-18

FT 4.77 3.00e16

NoT 0.0017 1.04e13

Caltech-101
ViT

FT 0.299 1.74e19

NoT 0.0006 3.56e16

• Estimating the Stochasticity Term: For the term:

1

2

∫ t

0

∣∣Tr (Σ(θs, s)2 · ∇2LDr (θ
s)
)∣∣ ds, (87)

we assume Σ(θs, s) is diagonal and use Formula 8 from
[56] to approximate Σ(θs, s)2. The Hessian ∇2LDr is
also approximated as diagonal, reducing the trace to a
product of the diagonal elements.

Results. The compiled results are presented in Table 3,
alongside computational cost estimates, for comparison
with experimental results in Table 1.

Observations:
• Stochasticity Term: The term Σ(θs, s)2 is orders of

magnitude smaller than the available loss decrease, allow-
ing us to neglect its contribution.

• Comparison of FT and NoT: We obtain a significant dif-
ference between FT and NoT with a predicted cost ratio
close to the experimental cost ratio.

• Accuracy of the Bound: The theoretical lower bound
for tunlearn is significantly lower than empirical results,
suggesting potential for refinement by incorporating de-
tails of the gradient descent trajectory.

13.2. Client-wise FU in a Non-IID Setting
Table 4 presents results for client-wise FU in a non-IID set-
ting, where data across the 10 clients follow a Dirichlet dis-
tribution with β = 0.1. Results show that even in non-IID
setting NoT outperforms existing baselines.

13.3. Class-wise FU in an IID Setting
Table 5 presents results for class-wise FU in an IID set-
ting, where samples of class 0 are to be forgotten from all
clients. Each client sends a request to the server, then the
server starts the unlearning process by applying layer-wise
weight negation to the global model. Finally, several rounds
of fine-tuning are done on the clients’ retain data. Results
in Table 5 demonstrates the effectiveness of NoT compared
to baselines in class-wise FU.

Table 4. Client-wise federated unlearning in a non-IID setting. Performance comparison of NoT with baselines in a 10-client setup,
where the first client requests unlearning. Client data follows a Dirichlet distribution with β = 0.1. The best average gap is marked in red.

Dataset
& Model Method Accuracy (%) Privacy (%) Avg.

Gap ↓
Cost (Bytes & FLOPs)

Retain (∆ ↓) Forget (∆ ↓) Test (∆ ↓) MIA (∆ ↓) Comm. ↓ Comp. ↓

Caltech-101
ViT

Retrain 98.42± 0.45 (0.00) 43.80± 2.15 (0.00) 45.56± 0.61 (0.00) 52.20± 1.79 (0.00) 0.00 1.77e12 9.88e21

FT 99.80± 0.06 (1.38) 80.04± 2.18 (36.24) 47.75± 0.08 (2.19) 67.87± 1.73 (15.67) 13.87 1.48e12 8.24e21

PGD 99.72± 0.08 (1.30) 75.94± 2.54 (32.14) 47.25± 0.50 (1.69) 65.73± 0.82 (13.53) 12.16 1.48e12 8.25e21

MoDE 97.87± 1.19 (1.19) 47.69± 2.53 (6.39) 46.81± 0.67 (1.71) 51.70± 2.35 (3.00) 3.07 1.64e12 9.18e21

FCU 99.34± 0.02 (0.92) 52.01± 0.57 (8.21) 45.53± 0.57 (0.03) 54.80± 1.26 (2.60) 2.94 1.48e12 9.44e21

NoT (Ours) 97.71± 0.41 (0.71) 45.20± 2.40 (1.40) 45.93± 0.54 (0.37) 51.23± 1.49 (0.97) 0.86 8.90e11 4.95e21

Table 5. Class-wise federated unlearning. Performance comparison of NoT with baselines in a 10-client setup, where samples of class 0
are to be forgotten from all clients. The data distribution among clients is IID. The best average gap is marked in red.

Dataset
& Model Method Accuracy (%) Privacy (%) Avg.

Gap ↓
Cost (Bytes & FLOPs)

Retain (∆ ↓) Forget (∆ ↓) Test (∆ ↓) MIA (∆ ↓) Comm. ↓ Comp. ↓

Caltech-101
ViT

Retrain 99.32± 0.11 (0.00) 0.00± 0.00 (0.00) 46.85± 0.35 (0.00) 92.07± 1.47 (0.00) 0.00 1.48e12 8.24e21

FT 99.93± 0.03 (0.61) 77.39± 2.37 (77.39) 46.69± 0.24 (0.16) 71.53± 0.74 (20.54) 24.68 1.19e12 6.60e21

MoDE 98.74± 0.89 (0.73) 0.00± 0.00 (0.00) 46.97± 0.42 (0.18) 84.70± 6.16 (8.20) 2.28 1.35e12 7.54e21

NoT (Ours) 99.36± 0.10 (0.04) 0.70± 0.49 (0.70) 46.54± 0.17 (0.31) 84.83± 1.37 (7.24) 2.07 8.90e11 4.95e21

13.4. Instance-wise FU in an IID Setting
Table 6 presents results for instance-wise FU in an IID set-
ting. We set 10% of each client’s samples to be forgotten.
Similar to class-wise FU, each client requests from the the
server to initiate the unlearning process. Next, the server
applies layer-wise weight negation to the global model. Fi-
nally, several rounds of fine-tuning are done on the clients’
retain data. Results in Table 6 demonstrates the effective-
ness of NoT compared to baselines in instance-wise FU.

13.5. Backdoor Attack
We further evaluate unlearning effectiveness by removing
the influence of backdoor triggers [20]. Following prior
works [21, 63, 71], a fraction of the target client images is
poisoned with a 3×3 pixel pattern trigger (using the Adver-
sarial Robustness Toolbox [44]) and relabeled as ‘airplane’
(excluding pre-existing airplane labels). ViT and Caltech-
101 are used in this experiment. A global model is then
trained from scratch using all clients, including the poi-
soned one, until convergence. Due to the target client, the
global FL model becomes vulnerable to the backdoor trig-
ger. A successful unlearning method should eliminate the
influence of the poisoned client. Table 7 shows that NoT
achieves the lowest average gap with minimal communi-
cation and computation costs, outperforming baselines in
removing backdoor influence.

13.6. Further CKA Analysis
Figure 3, presented CKA comparisons for a CNN model,
demonstrating alignment with the theoretical analysis.
Here, we extend CKA analysis to ResNet-18 and ViT mod-
els, confirming that layer negation disrupts co-adaptation

while preserving similar features. Figure 7 shows the
CKA similarity between the original (FT), random (Re-
train), and layer-wise-negation (NoT) models, before (τ :0)
and after (τ :-1) fine-tuning. The FT model at τ :0 serves as
the reference.

• ResNet-18: The first convolutional layer (index ℓ:0) is
negated. Activations from the ReLU following each layer
and the head are analyzed.

• ViT: The convolutional projection layer (index ℓ:1) is
negated. Focus is on Conv Proj, Encoder 0, and Head
activations.

Comparing NoT to FT at round τ :0 reveals greater diver-
gence at deeper layers, reflecting disrupted co-adaptation.
In ViT, we can see the significant CKA dissimilarity for the
subsequent layer (Encoder 0) and output (Heads). How-
ever, the transformer residual connections seem to bring
features back to high similarity with a decreasing trend in
depth. Since this behavior is observed across perturba-
tions and even randomized network shows similar pattern,
we normalize the CKA via CKAQ−CKARetrain@τ:0

1−CKARetrain@τ:0
to clar-

ify these results, where Q is any model. After fine-tuning,
Retrain and NoT (τ :-1) exhibit similar CKA but differ from
FT. This demonstrates that after fine-tuning, NoT becomes
closely similar to Retrain. Moreover, an indication of NoT
preserving effective pretraining benefits is by comparing
two random models, at τ :0, where the first layer has the
original weights while the other has the negation of the orig-
inal weights as in FT@τ=0. The high CKA similarity be-
tween those two models confirms the effective pretraining
of negating the first layer.

Table 6. Instance-wise federated unlearning. Performance comparison of NoT with baselines in a 10-client setup, where 10% of each
client’s data is randomly selected to be forgotten. The data distribution among clients is IID. The best average gap is marked in red.

Dataset
& Model Method Accuracy (%) Privacy (%) Avg.

Gap ↓
Cost (Bytes & FLOPs)

Retain (∆ ↓) Forget (∆ ↓) Test (∆ ↓) MIA (∆ ↓) Comm. ↓ Comp. ↓

Caltech-101
ViT

Retrain 99.71± 0.01 (0.00) 47.58± 1.09 (0.00) 47.98± 0.23 (0.00) 49.70± 1.44 (0.00) 0.00 1.77e12 9.88e21

FT 99.96± 0.02 (0.25) 96.61± 0.91 (49.03) 48.91± 0.19 (0.93) 75.73± 1.39 (26.03) 19.06 1.48e12 8.24e21

MoDE 97.48± 1.58 (1.02) 51.94± 5.86 (2.49) 48.16± 0.40 (0.35) 51.33± 5.27 (0.17) 1.01 1.05e12 5.90e21

NoT (Ours) 99.85± 0.03 (0.14) 50.25± 1.24 (2.67) 47.97± 0.23 (0.01) 50.73± 1.75 (1.03) 0.96 9.19e11 5.50e21

Table 7. Backdoor attack in federated unlearning. Performance comparison of NoT with baselines in a 10-client setup, where one client
with 80% backdoored samples requests unlearning. The data distribution among clients is IID. The best average gap is marked in red.

Dataset
& Model Method Accuracy (%) Privacy (%) Avg.

Gap ↓
Cost (Bytes & FLOPs)

Retain (∆ ↓) Forget (∆ ↓) Test (∆ ↓) MIA (∆ ↓) Comm. ↓ Comp. ↓

Caltech-101
ViT

Retrain 99.73± 0.08 (0.00) 15.74± 0.34 (0.00) 48.31± 0.24 (0.00) 73.17± 1.55 (0.00) 0.00 1.76e12 1.37e21

FT 99.93± 0.02 (0.20) 23.24± 0.96 (7.50) 47.85± 0.07 (0.46) 60.60± 0.57 (12.57) 5.18 1.74e12 1.36e21

PGD 99.41± 0.37 (0.32) 62.82± 29.77 (47.08) 45.95± 1.28 (2.36) 70.07± 6.27 (3.10) 13.21 1.56e12 1.22e21

MoDE 98.70± 0.92 (1.03) 30.81± 13.87 (15.07) 45.54± 2.04 (2.77) 63.55± 10.35 (9.62) 7.12 1.76e12 1.38e21

FCU 99.51± 0.08 (0.22) 15.50± 0.53 (0.24) 48.46± 0.21 (0.15) 73.10± 1.13 (0.07) 0.17 1.06e12 9.98e20

NoT (Ours) 99.60± 0.02 (0.13) 15.62± 0.17 (0.12) 47.95± 0.07 (0.36) 73.17± 1.38 (0.00) 0.15 1.43e12 1.11e21

13.7. Direct Test of Layer-wise Optimality
By definition, Layer-wise Optimality (LWO) requires that
any layer ℓ in a modelN θ can be frozen while the remaining
layers are reinitialized, and the model can still be fine-tuned
to achieve optimal performance. We validate this property
by directly comparing the accuracy of models subjected to
this process with models trained from scratch.

We test the LWO of N θ′
, defined as:

θ′ := (−θℓ)ℓ∈Lneg ⊕ (θℓ)ℓ∈L \Lneg
. (88)

withN ∈ {CNN,ResNet-18,ViT}; Lneg only contains the
first layer for CNN and ResNet-18, and only the convolu-
tional projection for ViT. In all cases, layer-wise optimality
of ℓ ∈ L \Lneg is obvious since they are layers of an opti-
mal model N θ. Therefore, we only need to test layer-wise
optimality of ℓ ∈ Lneg.

Procedure: We freeze θℓ for ℓ ∈ Lneg, randomize
(reinitialize) θℓ′ for ℓ′ /∈ Lneg, and fine-tune. Results: Ta-
ble 8 shows that NR-Freeze achieves performance on par
with models trained from scratch (Retrain), confirming the
theoretical prediction that negation preserves layer-wise op-
timality. The same stopping conditions as for Table 1 to
compute the costs are used.

13.8. Spectral Content of Gradient Covariance
Given a model N θ : Rdin → Rdout with θ ∈ Rd,
define B the minibatch random variable with value in
Rdin×b with b the bath size, (θt)t∈[0,tmax] is the parame-
ter vector of the model across gradient descent and Σ :=

Cov(∇θLB(N θT

)) the covariance matrix of the random
variable whose value is the gradient of the model on a ran-

dom batch B at a random time T ∈ [0, tmax]. For our sim-
ulations, tmax = 0. Consider Sp(Σ) = {λ1, · · · , λd} the
spectrum of the covariance matrix with λ1 > λ2 > · · · >
λd. We are interested in visualizing the spectral content
curves:

Ψ : α 7→
∑[αd]

i=1 λi∑d
i=1 λi

, α ∈ [0, 1]. (89)

This spectral content measures the fraction of eigenvectors
generating the linear space generated by the gradients (up to
some noise threshold). More precisely, for β = 95%, define
αβ := min{α | Ψ(α) ≥ β}. The quantity [αβd] measures
the minimal number of dimension for a linear subspace to
contain 95% of the Euclidean norm squared of the noise of
the gradient across training.

The most direct approach to evaluation the function Ψ
is based on a direct use of the spectrum of the empir-
ical covariance matrix [2]. First, we evaluate the gra-
dient (Xi)i=1..b := (∇θLBi

(N θ0

))i=1..b for b ∈ N
randomly sampled mini-batchs (Bi)

b
i=1; and where θτ

is the parameter vector of the model at communication
round τ . We sample a random subsets K1, · · · ,Kp ⊂
{1, · · · , d} of model parameters and project each Xi onto
RKj to get XKj

i . Then, we compute the spectrum Sj :=

Sp(Cov(X
Kj

i , X
Kj

i)) = {λ1, · · · , λk} of the empirical co-
variance matrix. Finally, we compute our estimators Ψ̂j

with Equation (89) and Ψ̂ := 1
p

∑p
j=1 Ψ̂j .

Beware that, this direct estimator of the spectrum of Σ
is inconsistent [17, 30, 67] as we are in the setting of very
high dimensional random vectors (long-story short, covari-
ance matrices converge toward Gaussian ensembles, the
spectrum thus converges toward Tracy-Widom distribution

rel
u

lay
er1

.0.
rel

u

lay
er1

.1.
rel

u

lay
er2

.0.
rel

u

lay
er2

.1.
rel

u

lay
er3

.0.
rel

u

lay
er3

.1.
rel

u

lay
er4

.0.
rel

u

lay
er4

.1.
rel

u fc
0.0

0.2

0.4

0.6

0.8

1.0

CK
A

Si
m

ila
rit

y

Retrain: R()
FT:
NoT: (0) () 0

0 (R()) 0
(0) (R()) 0

rel
u

lay
er1

.0.
rel

u

lay
er1

.1.
rel

u

lay
er2

.0.
rel

u

lay
er2

.1.
rel

u

lay
er3

.0.
rel

u

lay
er3

.1.
rel

u

lay
er4

.0.
rel

u

lay
er4

.1.
rel

u fc
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
CK

A
Si

m
ila

rit
y

: 0
: -1

ResNet-18, CIFAR-10

Con
v_P

roj

En
cod

er_
0

En
cod

er_
1

En
cod

er_
2

En
cod

er_
3

En
cod

er_
4

En
cod

er_
5

En
cod

er_
6

En
cod

er_
7

En
cod

er_
8

En
cod

er_
9

En
cod

er_
10

En
cod

er_
11
Hea

ds

0.2

0.4

0.6

0.8

1.0

CK
A

Si
m

ila
rit

y

Retrain: R()
FT:
NoT: (1) () 1

1 (R()) 1
(1) (R()) 1

Con
v_P

roj

En
cod

er_
0

En
cod

er_
1

En
cod

er_
2

En
cod

er_
3

En
cod

er_
4

En
cod

er_
5

En
cod

er_
6

En
cod

er_
7

En
cod

er_
8

En
cod

er_
9

En
cod

er_
10

En
cod

er_
11
Hea

ds

0.2

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

CK
A

Si
m

ila
rit

y

: 0
: -1

ViT, Caltech-101

Figure 7. CKA (left) and normalized CKA (right) for ResNet-18 (top) and ViT (bottom) layer activations, compared to the original model
(θ = θ∗) before fine-tuning (FT@τ :0). τ :0 and -1 denote the first and last communication rounds. Models with negated first-layer weights
(ℓ:0 for ResNet-18 and ℓ:1 for ViT) and randomized (reinitialized) remaining layers are denoted as (−θ0)⊕ (R(θℓ))ℓ̸=0, where R(·) refers

to reintitializing. We normalize the CKA via CKAQ−CKARetrain@τ:0

1−CKARetrain@τ:0
to clarify these results, where Q is any model.

[42]). As a result, although still barely meaningful for shal-
low CNN, it yields inconclusive results for larger models
(ResNet and ViT). We thus implement the L∞ version of
the algorithm described in [31] to extract meaningful infor-
mation from the empirical spectrum of Σ obtained by the
method above.

14. Further Implementation Details
This section details the hyperparameters used for the exper-
iments in this paper.

14.1. Federated Unlearning

The global model was trained until convergence using the
local data of all 10 clients using SGD with 0.9 momentum,
0.001 learning rate, and 5e-4 for weight decay. In every
communication round, all clients participate in the federa-
tion. For all the experiments, except for CNN architectures,
we upscaled the images to 256 and utilized random crop-
ping to 224 and random horizontal flip with 0.5 probability.
For CNN experiments, we used the original image sizes of
32 with random horizontal flip with 0.5 probability. Local

Table 8. Layer-Wise Optimality (LWO) test of negated models via reinitialization of non-negated layers followed by fine-tuning. Retrain
denotes a model trained from scratch, and NR-freeze denotes a model obtained via Negating & Freezing Lneg, Reinitializing L \Lneg,
and fine-tuning. Results confirm that negation preserves layer-wise optimality, confirming our theoretical prediction that negation is
Layer-Wise Optimality Preserving.

Dataset
& Model Method Accuracy (%) Privacy (%) Avg.

Gap ↓
Cost (Bytes & FLOPs)

Retain (∆ ↓) Forget (∆ ↓) Test (∆ ↓) MIA (∆ ↓) Comm. ↓ Comp. ↓

CIFAR-10
CNN

Retrain 91.66± 0.12 (0.00) 83.05± 0.23 (0.00) 82.32± 0.30 (0.00) 50.23± 0.39 (0.00) 0.00 1.35e10 5.81e16

NR - Freeze 91.71± 0.11 (0.05) 82.93± 0.17 (0.12) 82.32± 0.28 (0.00) 50.23± 0.12 (0.00) 0.04 1.04e10 4.51e16

CIFAR-100
CNN

Retrain 72.32± 0.11 (0.00) 53.31± 0.87 (0.00) 54.28± 0.25 (0.00) 49.70± 0.64 (0.00) 0.00 1.38e10 5.96e16

NR-Freeze 72.46± 0.51 (0.14) 53.34± 0.79 (0.03) 54.53± 0.48 (0.25) 49.77± 0.53 (0.07) 0.12 1.23e10 5.30e16

CIFAR-10
ResNet-18

Retrain 100.00± 0.00 (0.00) 87.66± 0.64 (0.00) 87.73± 0.35 (0.00) 49.37± 0.29 (0.00) 0.00 1.23e12 5.66e18

NR - Freeze 99.98± 0.00 (0.02) 87.47± 0.05 (0.19) 86.72± 0.02 (1.01) 49.70± 0.70 (0.33) 0.39 5.98e11 2.75e18

CIFAR-100
ResNet-18

Retrain 99.96± 0.00 (0.00) 59.96± 0.61 (0.00) 60.66± 0.63 (0.00) 50.30± 0.30 (0.00) 0.00 7.34e11 3.38e18

NR - Freeze 99.98± 0.13 (0.01) 60.80± 0.24 (0.82) 60.30± 0.31 (1.67) 50.00± 0.22 (0.90) 0.85 7.43e11 3.42e18

Caltech-101
ViT

Retrain 99.73± 0.04 (0.00) 48.29± 0.44 (0.00) 48.02± 0.72 (0.00) 49.67± 3.47 (0.00) 0.00 1.76e12 1.37e21

NR - Freeze 99.71± 0.08 (0.02) 48.41± 1.03 (0.12) 48.10± 0.37 (0.08) 49.73± 1.59 (0.06) 0.07 1.55e12 1.21e21

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

tra
l C

on
te

nt
 (A

ll
La

ye
rs

)

Retrain @ :0
NoT @ :0

CNN, CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

tra
l C

on
te

nt
 (L

ay
er

 1
)

Retrain @ :0
NoT @ :0

ResNet-18, CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

tra
l C

on
te

nt
 (E

nc
od

er
 1

)

Retrain @ :0
NoT @ :0

ViT, Caltech-101

Figure 8. Spectral content of CNN (left), ResNet-18 (mid) and ViT (right) models. CNN: batch size 64, b = 2048, |K| = 2000 and
p = 100 with K with indices in all layers. ResNet: batch size 64, b = 128, |K| = 2000 and p = 100 with K with indices in only the first
residual block. ViT: batch size 16, b = 128, |K| = 2000 and p = 100 with K with indices in only the first encoder. In all cases, we observe
that the spectral content reaches 100% for NoT with between 20% and 30% less dimensions: Ψ−1

NoT(1
−)/Ψ−1

Retrain(1
−) ∈ [0.7, 0.8]. For

ViT and ResNet, we focus on the first layer after the convolution projection on which dimensionality reduction is the strongest and because
the size of these models makes it increasingly difficult to compute an accurate spectrum estimator.

client training is set to 1. The global model was trained for
communication rounds T = 2000 (CNN + CIFAR-10), 2000
(CNN + CIFAR-100), 800 (ResNet-18 + CIFAR-10), 1000
(ResNet-18 + CIFAR-100), 300 (ViT + Caltech-101), and
500 (ViT + CIFAR-100).

Below are the parameters we used for each unlearning al-
gorithm, where we select client 0 to be the target client and
assume unlearning starts at round T and lasts for another
T number of rounds. We utilized the same parameters for
training of the global model unless stated otherwise below.
We fine-tune all the hyperparameters to get the lowest aver-
age gap for the same number of communication rounds as
the training of the global model.
• Retrain. We use the same global values for training and

save the model after T rounds.
• FT. We use the same global values for training.
• FedEraser. For CNN: We use the same global values for

training.
• FUKD. For CNN: learning rate for unlearning is set to

1e-4, momentum to 0.9, distillation epochs to 3, and tem-
perature to 3.

• PGD. For CNN: learning rate for unlearning is set to 0.1,
unlearning iterations to 10, momentum to 0.9, updates per
iteration to 5, distance threshold to 3, and clip gradient
to 2. For ResNet-18: learning rate for unlearning is set
to 0.001, unlearning iterations to 2, momentum to 0.9,
updates per iteration to 7, distance threshold to 2.2, and
clip gradient to 1. ViT: learning rate for unlearning is set
to 0.001, unlearning iterations to 10, momentum to 0.9,
updates per iteration to 5, distance threshold to 1, and clip
gradient to 4.

• MoDE. For CNN: memory guidance rounds is set to 3
with 2 MoDE rounds, MoDe coefficient to 0.4, learning
rate for the models is 0.005, and the learning rate for the
degradation model is 0.1. For ResNet-18: memory guid-
ance rounds is set to 9 with 8 MoDE rounds, MoDe coef-
ficient to 0.95, learning rate for the models is 0.05, and the
learning rate for the degradation model is 0.1. ViT: mem-

ory guidance rounds is set to 15 with 12 MoDE rounds,
MoDe coefficient to 0.9, and learning rate for all models
is 0.001.

• FCU. An Adam optimizer is used where the momentum
terms are set to 0.9 and 0.99, and a ReduceLROnPlateau
scheduler with learning rate 0.1 as the starting point while
reducing it 1e-7 with a factor of 0.1 and patience of 2.
For CNN: learning rate for unlearning is set to 0.01, un-
learning iterations to 20, fusion interval to 10, and low-
frequency to 0.9. For ResNet-18: learning rate for un-
learning is set to 0.01, unlearning iterations to 10, fusion
interval to 10, and low-frequency to 0.7. ViT: learning
rate for unlearning is set to 0.01, unlearning iterations to
2000, fusion interval to 9, and low-frequency to 0.7.

• NoT. For all architectures we negate the first layer, except
efficient net we negate the weights of all convolution and
dense layers with indices ≤ 150. For ViT, we negate the
convolution projection (conv proj) layer.

14.2. Centralized Unlearning
In the following, we provide the hyperparameters we used
for our baselines in Table 2. For the base model, we used
ResNet-18 with CIFAR-10 dataset where we used the offi-
cial train set to train the base model using SGD with 0.9 mo-
mentum, 0.01 learning rate, and 5e-4 for weight decay. We
also used cosine annealing for 200 epochs with a minimum
of 0.0001 and saved the best model with the highest accu-
racy on the test set. For all the experiments, we upscaled
the CIFAR-10 images to 256 and utilized random cropping
to 224 and random horizontal flip with 0.5 probability.

Below are the parameters we used for each unlearning
algorithm, where we randomly select 10% of the data as
forget data. We utilized the same parameters for training of
the base model unless stated otherwise below. We fine-tune
all the hyperparameters to get the lowest average gap for 50
epochs.

• Retrain. We use the same base values for training and
save the model with highest test accuracy.

• FT. We use the same base values for training.
• RandL. We use the same base values for training. Fur-

ther, at each round, we iterativly train the model on ran-
dom labels for one epoch and then one epoch on retain
data.

• GA. We use the same base values for training, and we do
one epoch of GA and 49 epochs of fine-tuning.

• BadT. We use 1 as our temperature for BadT.
• ℓ1-sparse. We do 2 epochs with ℓ1 loss where we use

0.002 as our coefficient. Then, we do 48 epochs of fine-
tuning.

• SSD. We search over the space of dampening constants
and selection weights. We got the best results for 0.5 for
both dempening constant and and selection weights.

• SalUn. We masked 20% of the model weights for SalUn.

• NoT. We negate only the weights of the first layer of
ResNet-18 since it had the best performance. We tune
the learning rate and select 0.1 as the starting point while
reducing it 1e-5 in 10 epochs using cosine annealing.

	Introduction
	Related Work
	Preliminaries
	Unlearning Framework
	The Need for a Strong Perturbation
	What is a Resilient Perturbation?

	NoT - The Unlearning Algorithm
	Algorithm Overview
	Negation as a Strong and Resilient Perturbation
	Selecting Layers for Negation

	Experiments
	Experimental Setup
	Results
	Ablation Study

	Limitations
	Conclusion
	Co-Adaptation
	NoT Algorithm
	PyTorch Code
	Extra Theoretical Results and Mathematical Proofs
	Unlearning Time Lower Bound
	Activation Distance Maximization
	Jacobian Bound
	Layer-Wise Optimality
	Affine Compensation of Layer Negation.

	Empirical Support of Theoretical Analysis
	Quantitative Unlearning Time Constraint
	Client-wise FU in a Non-IID Setting
	Class-wise FU in an IID Setting
	Instance-wise FU in an IID Setting
	Backdoor Attack
	Further CKA Analysis
	Direct Test of Layer-wise Optimality
	Spectral Content of Gradient Covariance

	Further Implementation Details
	Federated Unlearning
	Centralized Unlearning

