
Supplementary Material for Perceptual Video Compression with Neural
Wrapping

This document provides
• additional visual comparisons (Sec. 1)
• additional objective comparisons (Sec. 2)
• additional results of pretraining (Sec. 3)
• description of the proposed inference architecture and its

complexity (Sec. 4),
• codec recipes, methodology for BD-rate measurements

and combined plots, and utilized content (Sec. 5-Sec. 9),
• details on the type of subjective testing used, and a sum-

mary of its key attributes. (Sec. 10),
• PSNR performance (Sec. 11)

1. Visual Comparison
Beyond the visual results on gaming sequences presented
in the main paper, additional visual comparisons to DCVC-
DC [7] are provided in Fig. 1 on gaming and natural se-
quences. When assessing visuals, the proposed method is
found to better preserve text and fine details/textures in the
content at lower bitrates than DCVC-DC. Visual compari-
son vs DCVC-FM [8] is shown in Fig. 2. It is again no-
ticed that the proposed method provides better visual qual-
ity compared to DCVC-FM.

2. Additional Objective Results
Refer to Fig. 3 to see the rate distortion plots for all the
methods. These plots show that the proposed approach out-
performs competing methods across a variety of metrics.

3. Additional Results of Pretraining
A novel pretraining method for a proxy codec model has
been proposed in the main paper. Fig. 4 shows scatter plots
of different metrics for the actual codec vs the codec proxy
before and after the pretraining. The plots clearly show bet-
ter correlation between SVT-AV1 and the codec model af-
ter pretraining, indicating that the proposed approach allows
the codec model to learn a meaningful representation of the
rate and distortion behavior of an actual codec.

4. Network Architectures
A similar network architecture is used for both the pre and
postprocessor. An initial convolutional layer processes an

input and produces a 64-channel feature. This is followed
by five ResBlocks [3], each with 64 channels. This is then
followed by a final convolutional layer. Importantly, both
pre and postprocessors have a single frame latency. The
preprocessor processes the luma channel only, given that:
(i) the human visual system has much higher sensitivity
to luminance deviation than chromatic deviation; (ii) lu-
minance contributes substantially more to rate; (iii) it was
found empirically that high-frequency information embed-
ded by the preprocessor in the chroma channels is likely to
be removed by the target codec and is not propagated to
the postprocessor. After an initial end-to-end training of the
pre and the postprocessor for 100000 iterations, the trained
models are pruned to 16 channels per ResBlock. Specifi-
cally, structured pruning is performed by ranking weights
based on their channel-wise L1 norms and lower ranked
channels are pruned. The pruned networks are trained end-
to-end for 500000 iterations. Afterwards, static quantiza-
tion is performed resulting in int8 quantized weights. Per
output pixel, this results to 7.7KMACs and 9.5KMACs
for the pre- and postprocessor, respectively. Given that
preprocessing is applied once for all quality levels, these
compute requirements are significantly lower than those of
neural codecs like DCVC-DC [7], which tend to require
350KMACs/pixel or higher [8]. Putting this into context:
modern standard codecs (e.g., AV1 and VVC) are in the
range of 40KMACs/pixel for encoding and 4KMACS/pixel
for decoding [14]; therefore, the proposed approach bun-
dled with VVC or AV1 reaches: (7.7+40)KMACs/pixel for
encoding and (4+9.5)KMACs/pixel for decoding. This to-
tals 61.2KMACs/pixel, which is more than 5.7 times lower
than the complexity of DCVC-FM [8]. The networks are
shown graphically in Fig. 5.

Although ResNets [3] were proposed relatively early
and are somewhat simple, preliminary experiments with
other architectures demonstrated ResNets to be the optimal
choice for the pre and postprocessors. Experiments with
U-Nets [15] indicated a tendency to overfit to the training
data, making them less suitable. Transformer architectures,
such as Swin Transformer blocks [11], were not used for
two reasons: their performance significantly degrades at
lower computational complexity, and they struggle to gen-
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Source DCVC-DC Proposed

7992kbps 7383kbps
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Figure 1. Visual comparison of the proposed method with DCVC-DC [7]. Zoom for better view.

erate high-frequency details without being cascaded with
CNNs. Multiframe temporal networks, which are expected
to perform better than single-frame models, were not used
to avoid latency issues in the video streaming framework.

The input frames during training are Iin ∈
Rb×T×3×M×M where b is the batch-size, T is the GOP, 3
is the number of channels (YUV) and M is the patch size.
The first two dimensions of the input are flattened at the
input of the pre and postprocessor to I ′in ∈ RbT×3×M×M

and unflattened at the output. Evaluation is performed with
a single frame input to the pre and postprocessor. Inputs
to the networks are scaled to the [0, 1] and outputs are
scaled based on the target bitwidth, e.g., [0, 255]. Note
that the same procedure and training losses are used when
training with the proxy codec model proposed in [4]. More
specifically, a differentiable implementation of JPEG is
used with varying block sizes. The bitrate during training
is estimated as the scaled sum of the absolute values of
the DCT co-efficients. Since the authors do not mention

the quality factor of JPEG used in their training, we use a
quality factor of 85% based on empirical evaluation.

The input to the proposed methods is a single frame. Un-
like other single frame methods which produce temporal
flicker when used with videos, the proposed method pro-
duces temporally coherent results because the codec in the
middle processes multiple frames at once. In other words,
the training pipeline is temporal. Temporal coherence of the
proposed method is evident by the improved MOS results.
Temporally incoherent videos perform extremely poor in
MOS tests.

5. Codecs
The AV1 binary was built from the repository of SVT-
AV1 https://gitlab.com/AOMediaCodec/SVT-
AV1 with version v1.8.0. The VVC binary was built
from the VVenC repository https://github.com/
fraunhoferhhi/vvenc with version v1.10.0. Default
build options were used for both the codecs.

https://gitlab.com/AOMediaCodec/SVT-AV1
https://gitlab.com/AOMediaCodec/SVT-AV1
https://github.com/fraunhoferhhi/vvenc
https://github.com/fraunhoferhhi/vvenc


Source DCVC-FM Proposed

3921kbps 4161kbps

4301kbps 4444kbps

1708kbps1893kbps

1523kbps 983kbps

Figure 2. Visual comparison of the proposed method with DCVC-FM [8]. Zoom for better view.

6. Encoding Recipes

AV1: SvtAv1EncApp -i <invideo> --preset
4 --keyint -1 --crf <crf>
-b <outvideo>;
AV1+SSIM: SvtAv1EncApp -i <invideo>
--preset 4 --keyint -1 --tune 2
--crf <crf> -b <outvideo>;

The following low-delay recipe of AV1 was used in training
and ablation:
AV1 Low-delay: SvtAv1EncApp -i <invideo>
--preset 8 --keyint -1
--fast-decode 1 --pred-struct 1 --crf
<crf> -b <outvideo>;

VVC: vvencapp -i <invideo.yuv> -s
<width>x<height> -c yuv420
-r <fps> --preset slow --qp <crf> --qpa
0 -ip 256 -t 4
-o <outstream.266>;
VVC+QPA: vvencapp -i <invideo.yuv> -s
<width>x<height> -c yuv420
-r <fps> --preset slow --qp <crf> --qpa
1 -ip 256 -t 4
-o <outstream.266>;

DCVC-DC: python test video.py
--i frame model path

./checkpoints/cvpr2023 image ssim.pth.tar
--p frame model path
./checkpoints/cvpr2023 video ssim.pth.tar
--rate num 4 --test config
<path to rgb config json> --cuda 1
--worker 1 --write stream 1
--output path output.json
--save decoded frame 1
--decoded frame path
<path to decoded frames> --verbose 2

DCVC-FM: python test video.py
--model path i
./checkpoints/cvpr2024 image.pth.tar
--model path p
./checkpoints/cvpr2024 video.pth.tar
--rate num 4 --test config
<path to rgb config json> --cuda 1
--worker 1 --write stream 1
--output path output.json
--save decoded frame 1 --verbose 2

7. CRFs/QPs Used in Evaluation

AV1: {22, 27, 32, 37, 42, 47, 50, 52, 55, 57, 59, 61, 63};
VVC: {14, 16, 18, 20, 22, 27, 32, 37, 42, 47, 50, 52, 55, 57,
59, 61, 63}.
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Figure 3. Combined rate-quality plots over Gaming ((a), (b), (c), (d)), XIPH ((e), (f), (g), (h)), UVG ((i), (j), (k), (l)) and HEVC-B ((m),
(n), (o), (p)) datasets. Unlike DPP [2] and the rest of the methods, current version of DCVC-DC [7] has limited coverage of the entire
bitrate-quality regime of VVC.

8. BD-rate Measurement and Slope-based In-
tegration for Combined Plots

All BD-rate measurements are done with the code from the
libvmaf library of Netflix [9]. The entire range of each
quality metric is used and BD-rates are averaged over all
sequences of each dataset. AVQT is measured using the
Linux library provided by Apple.

The combined plots of Fig. 3 and Fig. 2 of the main
paper are produced based on the slope-based integration
method of Wu et al. [17]. This approach generalizes indi-
vidual rate-quality convex-hulls towards convex-hull curves
produced over the entire dataset. As shown by Fig. 3 and
Fig. 2 of the main paper, this provides for [17]: (i) signifi-
cantly higher number of points per method across the entire
bitrate-quality range; (ii) a way to compare the performance

of multiple methods over entire datasets, instead of focus-
ing on individual sequences. Note that the appearance of
non convexity on some curves is due to the use of log-scale
in the bitrate axis. For completeness and reproducibility,
the operation of slope-based integration is summarized here
based on the description of Wu et al. [17]. The combined
curves generalize the “constant-slope” method that is the
core of the dynamic optimizer framework [6]. The follow-
ing steps are applied:
• All test sequences of each dataset are grouped together

into one class.
• For each such class, each sequence is treated as a “shot”,

i.e., part of a longer sequence referred to as the combined
sequence that is the virtual “collage” of all sequences in
the class. For example, for the seven 1080p sequences
of the UVG dataset, with a total of 7× 96 frames, the
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Figure 4. Alignment between the codec model and actual codec (a) before and (b) after the proposed pretraining method.
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Figure 5. The (a) preprocesor, (b) postprocessor, (c) ConvBlock
and (d) ResBlock.

ensemble of these 672 frames is considered as a single
combined video sequence.

• After the convex hull is obtained for each “shot”, the mul-
tiple convex hulls (seven for the previous example) are
combined as described in the dynamic optimizer frame-
work [6], i.e., using the constant slope principle.

This results in a single rate-quality curve describing the cod-
ing performance over the entire combined sequence [17]
(i.e., over the entire dataset).

9. Test Sequences
The following sequences are used for evaluation:
Gaming: { apex legends, doom, dota2,
euro truck simulator2, fallout4,
flatout3 a, fortnite b, grid2a, gtav, injusticegodsauv2,
metro exodus c,
quake champions, warframe};
XIPH: {aspen, blue sky, controlled burn, crowd run,
ducks take off,
old town cross, park joy, pedestrian area, red kayak,
riverbed, rush field cuts, rush hour, sunflower, touch-
down pass, tractor, west wind easy};
UVG: {Beauty, Bosphorus, HoneyBee, Jockey, ReadyS-
teadyGo, ShakeNDry, YachtRide}.
HEVC-B: {BQTerrace, BasketballDrive, Cactus, Kimono,
ParkScene}.

All sequences are 8-bit and 1080p. For DCVC-DC, we use
GOP of 32 as suggested by the authors [7]. DCVC-FM [8]
uses infinite GOP as per authors recommendation. All en-
codings with the standard codecs use an infinite GOP. The
total number of frames per sequence is limited to 96 frames,
as per DCVC-DC [7] and DCVC-FM [8] testing methodol-
ogy.

The gaming sequences comprise first-person, third-
person, platform and simulator games, active and static
scenes, and varying levels of texture detail. All sequences



are in 1080p resolution and are captured via a professional
live gameplay capture, at framerates of 30fps or 60fps. The
XIPH sequences are all the synonymous 1080p sequences
available at https://media.xiph.org/video/
derf/. Finally, as in prior work [7], the UVG dataset is
using the seven 1080p sequences [13] available at https:
//github.com/ultravideo/UVG-4K-Dataset.

10. Subjective Evaluation Protocol
For all subjective tests, the ITU-T P.910 subjective quality
scoring [5] is used. As per ITU-T Visual Quality Experts
Group (VQEG [1]) recommendations, for a fixed amount
of testing time, the 5-scale absolute categorical rating with
hidden reference provides for the best accuracy (i.e., small-
est confidence intervals).1 A total of 72 sequences are
used in each test, taken from the encodings of the Gaming
dataset. Specifically, there are 8 hidden-reference (source)
sequences, selected as a representative subset, with 4 en-
codings per sequence at varying QP levels. The raw scores
of the test with AV1 and VVC are shown in Fig. 7a and
Fig. 7b, respectively, in the grayscale mapping produced by
SUREAL [10]. The strong presence of vertical lines indi-
cates agreement between raters, while the varying shades of
gray per row indicate that the utilized test content ensures
wide coverage of the rating scale. The raters’ biases and in-
consistencies are shown in Fig. 8 and Fig. 9, and are within
expectations (from the guidance provided by the authors of
SUREAL). The inconsistencies before and after SUREAL
processing are shown in Fig. 10 and Fig. 11, showing how
maximum-likelihood estimation carried out by SUREAL
adjusts the recovered MOS score per clip according to the
subject bias and inconsistency. Finally, the combined plots
of bitrate-MOS of Fig. 4 of the main paper are established
by using these recovered MOS scores in conjunction with
the methodology for the combined plots of Sec. 8.

11. PSNR Results
The PSNR BD-rates of the proposed method are shown
in Tab. 1. Since the method is optimized for perceptual
quality, we see a decreased PSNR performance. However,
the proposed approach shows improvement on other fidelity
metrics such as SSIM and MS-SSIM, as seen from the re-
sults in the paper. It is widely known that PSNR is not a
valid indicator of perceptual quality of a video. Refer to Fig.
6 as an example which compares DCVC-FM with the pro-
posed approach. DCVC-FM shows excellent performance

1Differential Categorical Rating (DCR) may offer smaller confidence
intervals per rater than Absolute Category Rating (ACR) as subjects rate
the difference between source and decoded result, but takes twice the time,
allowing only half the scores. As confidence intervals decrease polynomi-
ally with more scores [12, 16], ACR-HR is preferred for superior accuracy.
Moreover, increasing granularity in the testing scale does not improve ac-
curacy significantly, and tends to prolong the rating time per clip [16].

Table 1. PSNR BD-rates of the proposed method with VVC as
baseline.

Method Gaming Xiph UVG HEVC-B

VVC+Prop. 15 13 22 11

on PSNR, surpassing numerous recent codecs. This is also
indicated in the figure as DCVC-FM has better PSNR com-
pared to the proposed method. However, the visual qual-
ity of the proposed method is superior compared to DCVC-
FM. The proposed method does a significantly better job of
preserving geometric and textural details. In line with the
recent remarkable performance of neural codecs, especially
DCVC-FM, future research on neural codecs will benefit
from an increased focus on perceptual quality of videos.
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Figure 9. Subjects bias and inconsistency with VVC.

Figure 10. Recovered quality scores with SVT-AV1.



Figure 11. Recovered quality scores with VVC.
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