
Adaptive Non-uniform Timestep Sampling for
Accelerating Diffusion Model Training

Supplementary Material

9. Time Complexity of Our Algorithm
We compute the additional computational overhead introduced by the proposed timestep sampling mechanism. During each
iteration of diffusion model training, particularly for sufficiently large models, the majority of the time is dedicated to the
forward and backward passes of the objective Lt(θ). The backward pass, in particular, is more computationally demanding
due to the communication step required for gradient synchronization, typically taking about three times longer than the
forward pass [21]. Thus, if we denote the time required for the forward pass on a batch of data B as tfwd(θ), a single training
iteration will approximately take:

titer(θ) = tfwd(θ) + tbwd(θ) ≈ 4 · tfwd(θ).

If we do not approximate ∆t
k, its computation requires evaluating

∑T
t=1 Lt(·) twice—once before and once after updating

θ—resulting in a time complexity of t∆ = 2T · tfwd(θ). To alleviate this computational burden, we have proposed an
approximation using a subset of timesteps S, which reduces T to |S|. However, this approach also incurs additional time for
sampling objectives to identify an optimal subset S. The time complexity of this approximation scheme is given by:

t∆̃ = 2|S| · tfwd(θ) + tS , where tS = 2
T

|B|
· tfwd(θ).

The reason behind the time tS spent on subset selection is that we use a single x0 to compute objective samples for this
selection, while tfwd involves a full batch of |B| x0s during the forward pass. The time spent for running the feature selection
algorithm is negligible (takes about 1% of tfwd) and is therefore ignored. With typical hyperparameter choices in practice,
such as |S| = 3, |B| = 128, T = 1000, this results in t∆̃ ≈ 21 · tfwd(θ) for running Algorithm 2.

Since we run Algorithm 2 only once every fS = 40 updates of θ, the total time for the proposed algorithm is given by:

titer(θ,ϕ) = titer(θ) + tfwd(ϕ) +
1

fS

(
t∆̃ + titer(ϕ)

)
≈ 5.63 · tfwd(θ) ≈ 1.41 · titer(θ),

where we have assumed tfwd(θ) ≈ tfwd(ϕ). In practice, there are additional overheads due to minor factors, and we observed
that our algorithm takes approximately 1.5 times longer in terms of wall-clock time compared to the baseline.

10. Implementation Details
We mainly used a machine equipped with four NVIDIA RTX 3090 GPUs to train the models.

Dataset CIFAR-10 32×32 CelebA-HQ 256×256 ImageNet 256×256

Diffusion architecture DDPM [14] LDM [24] ADM [9]

Table 5. Our implementation details based on CIFAR-10, CelebA-HQ, ImageNet datasets.

Dataset CIFAR-10 32×32 CelebA-HQ 256×256 ImageNet 256×256

sampling steps 1000 200 50
sampling algorithm DDPM sampler DDIM sampler [28] EDM sampler [17]
number of samples in evaluation 50K 50K 50K

Table 6. Our evaluation settings based on CIFAR-10, CelebA-HQ, ImageNet datasets.

Baseline For all baselines, we used the most popular settings. For Min-SNR [11], we used snr gamma=5. For P2 [7],
we used gamma=0 and k=1. For log normal [17], we sampled weights from a normal distribution with a mean of 0 and a
standard deviation of 1, followed by applying a sigmoid function. For SpeeD [31], we sampled timesteps according to the
official code and used gamma=1 and k=1 for weighting.

Feature Selection method To overcome the computational burden of calculating δtk,i across all timesteps, we employ a
feature selection method. Specifically, we treat δtk,i as features to predict the target ∆t

k using a linear regression model.
The F-statistic is then computed for each feature δtk,i and by summing the top M features with the highest F-statistics, we
can efficiently approximate ∆t

k while focusing on the most influential timesteps i. The F-statistic identifies the features
that have the strongest linear relationship with the target variable, enabling us to focus on the most critical timesteps in the
approximation process. Although the F-statistic is employed here, other feature selection methods could also be applied.

11. Hyperparameter settings

Table 7. Hyperparameter settings for CIFAR-10

Category Parameter CIFAR-10

Diffusion

Timesteps 1000
Beta Start 0.0001
Beta End 0.02
Beta Schedule Linear
Model Mean Type Eps
Model Variance Type Fixed-large
Loss Type MSE
Backbone UNet
In Channels 3
Hidden Channels 128
Channel Multipliers [1, 2, 2, 2]
Number of Residual Blocks 2
Drop Rate 0.1
Learning Rate 2e-4
Batch Size 128
Gradient Norm 1.0
Epochs 2040
Warmup 5000
Use EMA True
EMA Decay 0.9999

Timestep Sampler

Learning Rate 1e-2(linear, quad), 1e-3(cosine)
Entropy Coefficient 1e-2
In Channels 3
Hidden Channels 128
Hidden Depth 2
fs 40
|Q| 20
|S| 3

Table 8. Hyperparameter settings for CelebA-HQ 256x256

Category Parameter CelebA-HQ

Diffusion

Timesteps 1000
Beta Schedule Linear
Model Mean Type Eps
Loss Type MSE
Backbone UNet
In Channels 3
Hidden Channels 224
Channel Multipliers [1, 2, 3, 4]
Number of Residual Blocks 2
Drop Rate 0.0
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Learning Rate 1.92e-4
Batch Size 24
Epochs 300
Use EMA True
EMA Decay 0.9999

Timestep Sampler

Learning Rate 1e-3
Entropy Coefficient 1e-2
In Channels 3
Hidden Channels 256
Hidden Depth 2
fs 40
|Q| 20
|S| 3

Table 9. Hyperparameter settings for ImageNet 256x256

Category Parameter ImageNet

Diffusion

Timesteps 1000
Beta Schedule Cosine
Model Mean Type Epsilon
Loss Type MSE
Backbone U-ViT
Layers 238
Hidden Size 1152
Heads 16
Depths 12
Optimizer AdamW (β1 = 0.99, β2 = 0.99)
Learning Rate 2e-4
Batch Size 256
Training iterations 2.1M
Use EMA True
EMA Decay 0.9999

Timestep Sampler

Learning Rate 1e-3
Entropy Coefficient 1e-2
In Channels 3
Hidden Channels 256
Hidden Depth 2
fs 40
|Q| 20
|S| 3

12. Visualization
LD

M
P2

M
in

-S
NR

Lo
g-

no
rm

al
Sp

ee
D

Ou
rs

Epochs

Figure 8. Visualization of CelebA-HQ images generated by our method and baseline methods.

