Adaptive Non-uniform Timestep Sampling for Accelerating Diffusion Model Training

Supplementary Material

9. Time Complexity of Our Algorithm

We compute the additional computational overhead introduced by the proposed timestep sampling mechanism. During each iteration of diffusion model training, particularly for sufficiently large models, the majority of the time is dedicated to the forward and backward passes of the objective $\mathcal{L}_t(\theta)$. The backward pass, in particular, is more computationally demanding due to the communication step required for gradient synchronization, typically taking about three times longer than the forward pass [21]. Thus, if we denote the time required for the forward pass on a batch of data *B* as $t_{\text{fwd}(\theta)}$, a single training iteration will approximately take:

$$t_{\text{iter}(\theta)} = t_{\text{fwd}(\theta)} + t_{\text{bwd}(\theta)} \approx 4 \cdot t_{\text{fwd}(\theta)}$$

If we do not approximate Δ_k^t , its computation requires evaluating $\sum_{t=1}^T \mathcal{L}_t(\cdot)$ twice—once before and once after updating θ —resulting in a time complexity of $t_{\Delta} = 2T \cdot t_{\text{fwd}(\theta)}$. To alleviate this computational burden, we have proposed an approximation using a subset of timesteps S, which reduces T to |S|. However, this approach also incurs additional time for sampling objectives to identify an optimal subset S. The time complexity of this approximation scheme is given by:

$$t_{\tilde{\Delta}} = 2|S| \cdot t_{\text{fwd}(\theta)} + t_S$$
, where $t_S = 2\frac{T}{|B|} \cdot t_{\text{fwd}(\theta)}$

The reason behind the time t_S spent on subset selection is that we use a single x_0 to compute objective samples for this selection, while t_{fwd} involves a full batch of $|B| x_0$ s during the forward pass. The time spent for running the feature selection algorithm is negligible (takes about 1% of t_{fwd}) and is therefore ignored. With typical hyperparameter choices in practice, such as |S| = 3, |B| = 128, T = 1000, this results in $t_{\tilde{\Delta}} \approx 21 \cdot t_{\text{fwd}(\theta)}$ for running Algorithm 2.

Since we run Algorithm 2 only once every $f_S = 40$ updates of θ , the total time for the proposed algorithm is given by:

$$\begin{split} t_{\mathrm{iter}(\theta,\phi)} &= t_{\mathrm{iter}(\theta)} + t_{\mathrm{fwd}(\phi)} + \frac{1}{f_S} \left(t_{\tilde{\Delta}} + t_{\mathrm{iter}(\phi)} \right) \\ &\approx 5.63 \cdot t_{\mathrm{fwd}(\theta)} \approx 1.41 \cdot t_{\mathrm{iter}(\theta)}, \end{split}$$

where we have assumed $t_{\text{fwd}(\theta)} \approx t_{\text{fwd}(\phi)}$. In practice, there are additional overheads due to minor factors, and we observed that our algorithm takes approximately 1.5 times longer in terms of wall-clock time compared to the baseline.

10. Implementation Details

We mainly used a machine equipped with four NVIDIA RTX 3090 GPUs to train the models.

Dataset	CIFAR-10 32×32	CelebA-HQ 256×256	ImageNet 256×256
Diffusion architecture	DDPM [14]	LDM [24]	ADM [9]

Table 5. Our implementation details based on CIFAR-10, CelebA-HQ, ImageNet datasets.

Dataset	CIFAR-10 32×32	CelebA-HQ 256×256	ImageNet 256×256
sampling steps	1000	200	50
sampling algorithm	DDPM sampler	DDIM sampler [28]	EDM sampler [17]
number of samples in evaluation	50K	50K	50K

Table 6. Our evaluation settings based on CIFAR-10, CelebA-HQ, ImageNet datasets.

Baseline For all baselines, we used the most popular settings. For Min-SNR [11], we used snr gamma=5. For P2 [7], we used gamma=0 and k=1. For log normal [17], we sampled weights from a normal distribution with a mean of 0 and a standard deviation of 1, followed by applying a sigmoid function. For SpeeD [31], we sampled timesteps according to the official code and used gamma=1 and k=1 for weighting.

Feature Selection method To overcome the computational burden of calculating $\delta_{k,i}^t$ across all timesteps, we employ a feature selection method. Specifically, we treat $\delta_{k,i}^t$ as features to predict the target Δ_k^t using a linear regression model. The F-statistic is then computed for each feature $\delta_{k,i}^t$ and by summing the top M features with the highest F-statistics, we can efficiently approximate Δ_k^t while focusing on the most influential timesteps i. The F-statistic identifies the features that have the strongest linear relationship with the target variable, enabling us to focus on the most critical timesteps in the approximation process. Although the F-statistic is employed here, other feature selection methods could also be applied.

11. Hyperparameter settings

Category	Parameter	CIFAR-10
	Timesteps	1000
	Beta Start	0.0001
	Beta End	0.02
	Beta Schedule	Linear
	Model Mean Type	Eps
	Model Variance Type	Fixed-large
	Loss Type	MSE
	Backbone	UNet
	In Channels	3
Diffusion	Hidden Channels	128
Diffusion	Channel Multipliers	[1, 2, 2, 2]
	Number of Residual Blocks	2
	Drop Rate	0.1
	Learning Rate	2e-4
	Batch Size	128
	Gradient Norm	1.0
	Epochs	2040
	Warmup	5000
	Use EMA	True
	EMA Decay	0.9999
	Learning Rate	1e-2(linear, quad), 1e-3(cosine)
	Entropy Coefficient	1e-2
Timestep Sampler	In Channels	3
	Hidden Channels	128
	Hidden Depth	2
	f_s	40
	Q	20
	S	3

Table 7. Hyperparameter settings for CIFAR-10

Category	Parameter	CelebA-HQ
	Timesteps	1000
	Beta Schedule	Linear
	Model Mean Type	Eps
	Loss Type	MSE
	Backbone	UNet
	In Channels	3
	Hidden Channels	224
Diffusion	Channel Multipliers	[1, 2, 3, 4]
	Number of Residual Blocks	2
	Drop Rate	0.0
	Optimizer	AdamW ($\beta_1 = 0.9, \beta_2 = 0.999$)
	Learning Rate	1.92e-4
	Batch Size	24
	Epochs	300
	Use EMA	True
	EMA Decay	0.9999
Timestep Sampler	Learning Rate	1e-3
	Entropy Coefficient	1e-2
	In Channels	3
	Hidden Channels	256
	Hidden Depth	2
	f_s	40
	Q	20
	S	2

Table 8. Hyperparameter settings for CelebA-HQ 256x256

Category	Parameter	ImageNet
	Timesteps	1000
	Beta Schedule	Cosine
	Model Mean Type	Epsilon
	Loss Type	MSE
	Backbone	U-ViT
	Layers	238
	Hidden Size	1152
Diffusion	Heads	16
	Depths	12
	Optimizer	AdamW ($\beta_1 = 0.99, \beta_2 = 0.99$)
	Learning Rate	2e-4
	Batch Size	256
	Training iterations	2.1N
	Use EMA	True
	EMA Decay	0.9999
	Learning Rate	1e-3
	Entropy Coefficient	1e-2
	In Channels	
Timestep Sampler	Hidden Channels	250
	Hidden Depth	
	f_s	40
	Q	20
	S	

Table 9. Hyperparameter settings for ImageNet 256x256

12. Visualization

Epochs

Figure 8. Visualization of CelebA-HQ images generated by our method and baseline methods.