BF-STVSR: B-Splines and Fourier—Best Friends for High Fidelity
Spatial-Temporal Video Super-Resolution

Supplementary Material

1. Definition of B-spline function

The B-spline basis function 8" (x) is defined as the n-fold
convolution of 3%(z) with itself, where n represents the
polynomial degree. The function 3°(x) equals 1 when
|x] < 0.5 and O otherwise. As n increases, the support
expands: 3!(x) spans [—1,1], 3%(z) spans [—1.5, 1.5], and
33(z) spans [—2, 2]. In this study, we adopt the third-order
B-spline (n = 3) for B-spline Mapper. The definitions of
3%(z) and its derivative -2 33(x) are provided in Eq (1) and
Eq (2), respectively.

$(2+a)8 if —2<z<-1,;
$(4—6a? —32%) if —1<z<O0;
Bx)=¢ L4 —62+32%) if0<z< (1)
12—q)} ifl<a<2;
0 otherwise.
1(2+z)? if —2<2<-1;
P —2x— 1522 if —1<z<0;
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2. Detailed Architectures of Mappers

We present the detailed network architecture of B-spline
Mapper and Fourier Mapper in Fig 1. Both mappers take
encoder features as input and capture temporal/spatial infor-
mation using three-layer SIRENSs [4]. In B-spline Mapper, a
linear layer is used for each coefficient estimator, predicting
the coefficients, knots, and dilations for B-spline represen-
tations. In Fourier Mapper, linear and convolutional layers
follow the SIREN layers to estimate the amplitudes and fre-
quencies of the Fourier coefficients. Finally, the B-spline or
Fourier representations are passed through a linear layer to
produce motion vectors or spatial features.

3. Different Position Encodings

We further compare our model with other position encod-
ing techniques in Table 1. Specifically, we compare our
model with Fourier Encoding (FE) [3], Thin-Plate Spline
(TPS) [7], which is proved effective in image animation,
and Gaussian function (~ oc-order B-spline). For FE, we
concatenate encoded coordinates with INR input features.

For fair comparison, we follow the training scheme of Mo-
TIF [1], which includes the optical flow supervision from
the RAFT [5]. For Gaussian, similar to ours, we learn scal-
ing, mean, and variance factor. Ours model achieves the
best performance, with other basis functions outperformed
FE that solely relies on coordinates rather than leveraging
priors of basis functions to focus on informative video de-
tails.

Table 1. Performance comparison of different position encodings
on GoPro and Adobe240 datasets. Results are evaluated using
PSNR (dB) and SSIM metrics. All frames are interpolated by a
factor of x4 in the spatial axis and X8 in the temporal axis. FE
denotes Fourier Encoding and TPS denotes Thin-Plate Spline. Red
indicates the best performance.

‘ Test Dataset

Method ‘Adobe-Avemg(/ Adobe-Center  GoPro-Average ~ GoPro-Center

MoTIF (w FE)
MOoTIF (w learnable FE)

30.02/0.8781 30.73/0.8855 30.08/0.8780 31.01/0.8877
30.05/0.8789  30.76/0.8862 30.11/0.8786  31.06/0.8884
MOoTIF (w TPS) 30.02/0.8786 30.70/0.8856  30.10/0.8783  31.03/0.8880
BF-STVSR (w gaussian) | 30.06/0.8787 30.71/0.8855 30.11/0.8777 31.01/0.8870
BF-STVSR + Lpapr (Ours) | 30.14/0.8808  30.84/0.8877 30.20/0.8799  31.14/0.8893
BF-STVSR (Ours) 30.12/0.8808  30.83/0.8880  30.22/0.8802  31.17/0.8898

4. Different Basis Function Configurations

We conduct additional experiments by varying the basis
functions used for both axes in Table 2. In all configu-
rations, the basis function model the spatial and temporal
axes, while other components (e.g., linear projection for in-
termediate motion vectors and reliability maps) remain the
same. Here, we follow the training scheme of MoTIF [1],
which incorporating the optical flow supervision in Eq. (5)
of the main paper. Although the performance differences
among these configurations are minimal, we adopt the con-
figuration using B-spline for temporal representation and
Fourier for spatial representation, as it achieves the highest
performance.

Table 2. Performance comparison on the cross basis function con-
figurations. Results are evaluated using PSNR (dB) and SSIM
metrics. “Ours-cross” uses Fourier Mapper as temporal basis func-
tion and B-spline Mapper as spatial basis function. “Ours-FF” ap-
plies the Fourier Mapper for both spatial and temporal axes and
“Ours-BB” employs the B-spline Mapper for both axes. Red indi-
cates the best performance.

GoPro-Center  GoPro-Average  Adobe-Center ~ Adobe-Average
Ours 31.14/0.8893  30.20/0.8799  30.84/0.8877  30.14/0.8808
Ours-cross | 31.10/0.8892  30.17/0.8796  30.80/0.8876  30.10/0.8804
Ours-FF | 31.12/0.8894  30.18/0.8798  30.84/0.8879  30.13/0.8809
Ours-BB | 31.07/0.8885 30.16/0.8793  30.77/0.8865  30.09/0.8797
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Figure 1. Detailed Architectures of of B-spline Mapper and Fourier Mapper.

Table 3. Performance comparison on the C-STVSR baselines on
Vimeo90K dataset. Results are evaluated using PSNR (dB) and
SSIM metrics. All frames are interpolated by a factor of x4 in the
spatial axis and x6 in the temporal axis. Red indicates the best
performance.

Test Dataset

Method ‘

| Vimeo-Fast  Vimeo-Medium  Vimeo-Slow

VideolINR [2] 25.79/0.7980  28.37/0.8553  29.25/0.8727
MoTIF [1] 26.03/0.7909 28.68/0.8574 29.47170.8739
BF-STVSR + Liapr (Ours) | 26.53/0.8079 28.76 / 0.8594 29.53/0.8748
BF-STVSR (Ours) 26.52/0.8054  28.77/0.8590  29.55/0.8750

5. Additional Results on Vimeo90K

We further evaluate C-STVSR baselines, including
VideoINR [2], MoTIF [1], BF-STVSR + Lrapr and
BF-STVSR, all trained on Adobe240 dataset, using the
Vimeo90K dataset. Vimeo90K, a widely used benchmark
for video enhancement, comprises 64,612 clips, each con-
taining seven frames. Following [6], we categorize the test-
set into three motion groups: Fast, Medium, and S1low.
The evaluation results, presented in Table 3, show that our
model achieves higher PSNR across all motion categories.
Notably, it outperforms VideoINR by approximately 0.7 dB
and MoTIF by 0.5 dB on the Vimeo-Fast subset, high-
lighting its superior ability to effectively handle motion dy-
namics, even in challenging scenarios.

Additionally, we train the C-STVSR models (VideoINR,
MoTIF, and BF-STVSR + Liapr) using the Vimeo90K
trainset until 450K training iterations. Similar to the
Adobe240 dataset, we select seven consecutive frames from
each video clip, use the 1°¢ and 7" frames as input ref-
erence frames, and randomly sample three intermediate
frames as ground-truth. These models are then evaluated
on GoPro and Adobe240 datasets, following the -Center

Table 4. Performance comparison on the C-STVSR baselines on
GoPro and Adobe240 datasets. Baseline models are trained on
Vimeo90K septuplet dataset. Results are evaluated using PSNR
(dB) and SSIM metrics. All frames are interpolated by a factor of
x4 in the spatial axis and x8 in the temporal axis. Red indicates
the best performance.

Test Dataset
Adobe-Average  Adobe-Center ~ GoPro-Average  GoPro-Center
VideoINR [2] 28.95/0.8527 29.58/0.8603 29.43/0.8657 30.20/0.8751
MOoTIF [1] 28.81/0.8495 29.47/0.8580 29.44/0.8649  30.24/0.8742
BF-STVSR + Lpapr (Ours) | 2930/0.8611  29.88/0.8677  29.75/0.8709  30.53/0.8796

Method

and -Average evaluation protocols detailed in the main pa-
per. The results, presented in Table 4, demonstrate that
our model consistently achieves higher PSNR across all
datasets, with improvements of approximately 0.4 dB over
VideoINR and 0.3 dB over MoTIF.

These results suggest that our model is both robust and
versatile. While trained on specific datasets, it shows
promising generalization across diverse datasets, achiev-
ing competitive performance in reconstructing high-quality
frames. In comparison, previous methods exhibit some
challenges in adapting to unseen data, highlighting the po-
tential advantages of our approach.

6. Additional Qualitative Results

We provide more qualitative comparison between BF-
STVSR and prior methods (VideoINR [2], MoTIF [1]), all
trained on Adobe240 dataset. Fig 2 and Fig 3 present tem-
poral interpolation results (with the spatial scale fixed at
1) on the DAVIS dataset across all temporal coordinates,
which were not shown in the main paper, at both the out-
of-distribution scale (x6) and in-distribution scale (x8&),
respectively. Fig 4 shows the spatial-temporal interpola-
tion results on GoPro dataset at in-distribution temporal



scale (x8) and in-distribution spatial scale (x4). Fig 5
shows the temporal interpolation results on the Vimeo-
Medium testset at the out-of-distribution scale (x6). Fig 6
and Fig 7 show spatial-temporal interpolation results on
the Vimeo-Fast testset at the out-of-distribution temporal
scale (x6) and both out-of-distribution and in-distribution
spatial scales (x2, x4), respectively.
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Figure 2. Qualitative comparison on arbitrary scale temporal interpolation on out-of-distribution (x6) with all time coordinates. We use
the DAVIS dataset for evaluation. “Overlap” refers to the averaged image of two input frames (¢ = 0, 1), and the following images are
interpolation results at ¢ = (0, 1).
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Figure 3. Qualitative comparison on arbitrary scale temporal interpolation on in-distribution (x8) with all time coordinates. We use the
DAVIS dataset for evaluation. “Overlap” refers to the averaged image of two input frames (¢ = 0, 1), and the following images are
interpolation results at ¢t = (0, 1).
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Figure 4. Qualitative comparison on arbitrary scale temporal interpolation on in-distribution (x8) for temporal scale and in-distribution
(x4) for spatial scale with all time coordinates. We use the DAVIS dataset for evaluation. “Overlap” refers to the averaged image of two
input frames (¢ = 0, 1), and the following images are interpolation results at t = (0, 1).
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Figure 5. Qualitative comparison on arbitrary scale temporal interpolation on out-of-distribution (x6) with all time coordinates. We use
the Vimeo-medium testset for evaluation. “Overlap” refers to the averaged image of two input frames (f = 0, 1), and the following images
are interpolation results at ¢ = (0, 1).
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Figure 6. Qualitative comparison on arbitrary scale spatial-temporal interpolation on out-of-distribution (x 6) for temporal scale and out-of-
distribution (x2) for spatial scale with all time coordinates. We use the Vimeo-Fast testset for evaluation. “Overlap” refers to the averaged
image of two input frames (¢ = 0, 1), and the following images are interpolation results at ¢ = (0, 1).
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Figure 7. Qualitative comparison on arbitrary scale spatial-temporal interpolation on out-of-distribution (x 6) for temporal scale and out-of-
distribution (x4) for spatial scale with all time coordinates. We use the Vimeo-Fast testset for evaluation. “Overlap” refers to the averaged
image of two input frames (¢ = 0, 1), and the following images are interpolation results at ¢ = (0, 1).
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