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Figure 1. Visualization of Attention Map. For different set of captions, we visualize the attention weights of the image and text cross-
attention modules. The patch-wise (image) and token-wise (caption) attention weights are both normalized between 0 and 1.

In this supplementary material, we include detailed in-
formation about the training procedure of COSMOS. We
first provide additional qualitative results in Sec. A. The
dataset configurations are described in Sec. B, and the
experimental setups are outlined in Sec. C. Additionally,
we elaborate on the baseline configurations in Sec. D and
present further experiments in Sec. E.

A. Qualitative Results
In Fig. 1, we visualize the attention maps of the cross-
attention modules with different captions to illustrate their
focus areas. We first normalize the attention weights across
all patches and map them back onto the original image.
Similarly, tokens in the captions are colored based on the
normalized attention weights. The qualitative results show
that our cross-attention module enhances the learning of lo-
cal representations in both modalities, namely image and
text. For example, our model is capable of detecting rela-
tively small objects in the image, such as sugar cubes (first
example of the second row) or a broken smartphone (third
example of the first row). This information is often over-
looked by the previous models due to feature suppression.

B. Dataset Configuration
As COSMOS is trained on web datasets, we had to down-
load the images based on the corresponding URLs, but
some of the URLs were invalid. Consequently, there is a

discrepancy between the number of samples used to train
our models and the original dataset sizes. The specific num-
ber of samples are reported in Tab. 1. We lost approxi-
mately 8.6% (YFCC15M) to 19.4% (CC12M) of samples
compared to the original datasets due to expired URLs. This
detail should be considered when directly comparing our
models with others.

Dataset Original Ours Difference Percentage

CC3M [44] 3,318,333 2,823,019 500,229 85.1%
CC12M [5] 12,423,374 10,010,225 2,413,149 80.6%
YFCC15M [9] 15,388,848 14,065,827 1,323,021 91.4%
Merged-30M 31,130,555 26,899,071 4,236,399 86.4%
PixelProse [46] 16,896,423 15,037,386 1,859,037 89.0%

Table 1. Size of the pre-training datasets. We compare the orig-
inal dataset sizes and the actual number of samples used to train
our models. We also report the percentage of samples that we suc-
ceeded to retrieve from the original image URL links.

Additionally, COSMOS is evaluated on Sugar-
Crepe [19], SVO [18], and MMVP [18], to assess the
robustness of its multi-modal representations.

The SugarCrepe dataset [19] consists of images with
positive and negative captions, where the model is required
to choose the positive one given an input image (50% is
the random chance). Negative captions are slightly different
from the positive captions in terms of attributes and objects,
with the goal of confusing the model. Since SugarCrepe



is based on the COCO [27] validation set, we were able to
download all images without any data loss.

SVO [18] consists of 36,841 data pairs, where each cap-
tion is paired with two images (one positive and one nega-
tive). Each image has its own triplet (subject, verb, object),
and the positive and negative images differ in one compo-
nent of the triplets. The original task is to match the caption
with one of the two images based on the similarity scores
given by VLMs (50% by random chance). Since naive
CLIP [40] already achieves 80% accuracy, we increased
the difficulty of this task by constructing negative captions.
Based on the triplet of positive and negative images, we re-
placed the subject, verb, or object in the positive caption
with the negative one. Currently, the model not only has to
match the positive image with the positive caption but also
match the negative image with the negative caption (25%
by random chance). As SVO is released with image URL
links, we were able to collect 22,220 data pairs (60.3% of
the original size).

MMVP-VLM [18] contains 15 image-text pairs across
9 categories, resulting in a total of 135 image-text pairs. It
categorizes 9 challenging visual patterns that most VLMs
struggle with. Each data point consists of two images and
two captions, requiring the VLMs to match the correct
image and caption respectively (25% by random chance).
Since Hendricks and Nematzadeh [18] released their dataset
including images and captions, we were able to fully down-
load the MMVP-VLM dataset as originally intended.

C. Experiment Configuration
In this section, we detail the configuration of our experi-
ments, including hyperparameters for training (Sec. C.1),
the inference process for each downstream task (Sec. C.2),
and the pseudocode of our training objective (Sec. C.3).

C.1. Hyperparameters

As shown in Tab. 2, we primarily follow the hyperparam-
eters described in DreamLIP [58], with the exception of
batch size. DreamLIP utilizes a batch size of 1,024 for
CC3M and 8,192 for other datasets. Due to computational
constraints, we adopt a batch size of 1,024 for CC3M and
4,096 for other datasets to train COSMOS. For reproduc-
ing CLIP [40] and SigLIP [57] with our setting, we use a
batch size of 1,024 for CC3M and 6,144 for other datasets
to establish a strong baseline.

As mentioned in the main paper, the teacher model is
updated at each iteration using the exponential moving av-
erage (EMA) of the student model. To obtain an effective
teacher for self-distillation, we need to determine the mo-
mentum parameter λ, which controls the update rule of the
teacher parameter θt based on the student parameter θs (i.e.,
θt = λθt + (1 − λ)θs). According to Caron et al. [3], a
higher batch size requires a lower momentum parameter.

Config Value

Optimizer AdamW [31]
Learning rate 5× 10−4

Weight decay 0.5
Adam β β1, β2 = (0.9, 0.98)
Adam ϵ 1× 10−8

Total epochs 32
Warm up iterations 2, 000
Learning rate schedule cosine decay

Table 2. Hyperparameter configuration.

Based on their configuration, we choose 0.999 for CC3M
and 0.99 for other datasets by default. We did not explicitly
perform a grid search for this parameter. Empirically, we
found that fixing the momentum parameter obtains a bet-
ter performance, unlike Caron et al. [3], who used a cosine
scheduler for the momentum parameter which eventually
converges to 1.0.

C.2. Inference

As COSMOS is applied to various downstream tasks, it is
crucial to establish a consistent evaluation protocol for each
task. Notably, the cross-attention module is not involved in
the inference process. Therefore, we are able to evaluate
COSMOS as a standard CLIP-based model, utilizing the
class token [cls] and end-of-text token [eot] as image and
text embeddings, respectively.

For zero-shot classification, we follow the process es-
tablished by CLIP [40]. First, we construct prompts us-
ing the class label names for each dataset, as referenced
in ALIP [53]. For each class, text embeddings are gener-
ated by the text encoder using different prompts, which are
then averaged to obtain the final text embedding. Given
an input image, the image encoder extracts the image em-
bedding and calculates the cosine similarity scores between
the image embedding and the text embeddings of all pre-
defined classes in each dataset. The class label with the
highest score is selected as the prediction.

Zero-shot retrieval is based on the image and text em-
beddings extracted from the pre-trained models, follow-
ing the evaluation scheme presented in [53]. For each
image-text pair, the pre-trained model generates image and
text embeddings, collecting all embeddings for the entire
dataset. We then compute a full cosine similarity matrix
between all image embeddings and all text embeddings.
Captions with the highest similarity scores are selected for
each image to calculate the R@1, R@5, and R@10 met-
rics for image-to-text retrieval. Similarly, for text-to-image
retrieval, we choose images with the highest scores for
each caption. As each image in the validation or test set
is equipped with multiple captions, image-to-text retrieval



scores are generally higher than text-to-image scores.
In zero-shot semantic segmentation, we exclude the

background category for PASCAL VOC [13] and PASCAL
Context [34], following Cha et al. [4] and Wang et al. [50].
To be specific, we denote the original datasets with a back-
ground class as VOC21 and Context60, while the variants
without the background category are referred to as VOC20
and Context59 in the main table. At inference time, for
a given set of classes in the datasets, we obtain the cor-
responding text embeddings by querying our text encoder
with a standard prompt. We compute the cosine similarity
between the image patch embeddings (image tokens) and
the text features of each class name to generate a segmen-
tation map in a zero-shot manner. We adhere to the evalu-
ation protocol established by SCLIP [50], including speci-
fications for the window size, stride, and other parameters.
We believe that the raw segmentation output of a VLM ac-
curately reflects its zero-shot performance; therefore, we do
not fine-tune our model or apply any post-refinement tech-
niques such as PAMR [1].

To evaluate on SugarCrepe [19], SVO [18], and
MMVP-VLM [48], we primarily referred to their evalu-
ation demo prompts. Image and text embeddings are ex-
tracted from the pre-trained models, and then image-text
pairs with higher cosine similarity scores are chosen as the
final decision.

C.3. Pseudocode

To increase the clarity of our method, we present the pseu-
docode of the training objective in Algorithm 1. We em-
pirically found that incorporating local image crops on the
CLIP loss diminishes zero-shot performance, whereas us-
ing local text crops enhances it. Consequently, we com-
pute the CLIP loss between all text crops and global im-
age crops. We infer that integrating diverse captions during
training allows the model to learn various objects shown in
the images, while including local image crops during train-
ing likely leads to the misalignment of image-text pairs.

D. Baseline Configuration
In the main tables, we evaluate both the pre-trained weights
from the official code repository and our reproduction. For
DreamLIP [58], we used the official pre-trained weights
with ViT/B-16 as the vision encoder. Since they did not
provide weights for the ViT/B-32 vision encoder, we ref-
erenced the results from their table as shown in Tab. 5 and
Tab. 6. For OpenCLIP [7], we utilized the models described
in Tab. 3. Specifically, they trained their CLIP models on
LAION-400M [42] until 12.8 billion examples were seen,
using a batch size of 33,792 for both ViT-B/16 and ViT-
B/32. For DataComp-1B [16], the models were trained until
12.8 billion examples were seen with a batch size of 90,112.
Additionally, the models were trained on LAION-2B [43]

Algorithm 1 COSMOS: Pseudocode of our loss function

# img_g, img_l: Global&local crop of image
# txt_g, txt_l: Global&local crop of text
# Is, Ts: Student image&text encoder
# It, Tt: Teacher image&text encoder

# Generate embeddings of size [batch, seq_len, dim]
s_img_g, s_img_l = Is(img_g, img_l) # Student image
s_txt_g, s_txt_l = Ts(txt_g, txt_l) # Student text
t_img_g = It(img_g) # Teacher image
t_txt_g = Tt(txt_g) # Teacher text

# Split into ([CLS],img_tok) or ([EOT], txt_tok)
s_cls_g, s_img_tok_g = s_img_g
s_eot_g, s_txt_tok_g = s_txt_g
s_cls_l, _ = s_img_l
s_eot_l, _ = s_txt_l
t_cls_g, _ = t_img_g
t_eot_g, _ = t_txt_g

# Calculate CLIP loss
clip_loss = (sym_nce(s_cls_g, s_eot_g) +

sym_nce(s_cls_g, s_eot_l))/2

# Generate cross-modality embeddings
s_cls = {s_cls_g, s_cls_l} # Combine student crops
s_eot = {s_eot_g, s_eot_l} # Combine student crops
h_img = s_cls + cross-attn(q=s_cls, kv=s_txt_tok_g)
h_txt = s_eot + cross-attn(q=s_eot, kv=s_img_tok_g)

# Calculate cross-modality self-distillation loss
cosmos_loss = (sym_nce(h_img, t_cls_g) +

sym_nce(h_img, t_eot_g) +
sym_nce(h_txt, t_cls_g) +
sym_nce(h_txt, t_eot_g))/4

final_loss = clip_loss + cosmos_loss

Notes: We assume one global view and one local view for simplicity.
sym nce represents the symmetric InfoNCE loss [38]. cross-attn de-
notes the cross attention module which requires key, value (kv) and query
(q) as inputs.

with a batch size of 88,064 (ViT-B/16) or 79,104 (ViT-B/32)
until 34 billion examples were seen.

Architecture Data Model Name

LAION-400M laion400m e32
ViT-B/16 DataComp-1B datacomp xl s13b b90k

LAION-2B laion2b s34b b88k

LAION-400M laion400m e32
ViT-B/32 DataComp-1B datacomp xl s13b b90k

LAION-2B laion2b s34b b79k

Table 3. OpenCLIP [7] model names.

E. Extra Experiments
E.1. Comparison to Previous SSL Methods

Previous works, such as SLIP [35] or SILC [36], aim to
enhance CLIP through self-supervision by explicitly op-
timizing local-to-global correspondences. These methods
primarily focus on the image encoder. Fig. 2 illustrates
how our approach differs from the self-supervised con-
trastive language-image pre-training methods, SLIP [35]



Figure 2. Illustration of CLIP with self-supervised approaches. I and T denote the image and text encoders, respectively. It (or Tt)
and Is (or Ts) represent the teacher and student image (or text) encoders, where the teacher is an exponential moving average (EMA) of
the student. (a) CLIP [40]: image and text embeddings are aligned during training. (b) SLIP [35]: contrastive loss is computed on sets
of two different augmentations. (c) SILC [36]: self-distillation loss is obtained between local and global crops of the same image. (d)
COSMOS: the cross-attention module is utilized to generate cross-modal representations which are optimized through the cross-modality
self-distillation loss. We also design global and local crops of image and text pairs for effective self-supervised learning in VLMs.

Method ImageNet MSCOCO Flickr30k

Top-1 I2T@1 T2I@1 I2T@1 T2I@1

(a) CLIP [40] 23.9 40.2 27.2 68.4 52.1
(b) SLIP [35] 26.6 44.4 30.5 75.8 58.7
(c) SILC [36] 30.4 48.6 35.4 79.0 62.1
(d) COSMOS 37.1 53.1 40.1 84.1 68.6

Table 4. Comparison to methods described in Fig. 2. All models
are trained on CC3M with long synthetic caption. We use the batch
size of 1,024 and ViT-B/16 image encoder.

and SILC [36].
In Tab. 4, we directly compare COSMOS with the previ-

ous methods depicted in Fig. 2. For a fair comparison, we
re-implemented these methods based on the OpenCLIP [7]
code repository and trained them on the CC3M dataset with
long captions provided by DreamLIP [58]. The projection
layer parameters follow the SLIP configuration, while the
optimal temperature and loss scale for SILC were carefully
determined. After a grid search, we selected student and
teacher temperatures of 0.1 and 0.02, respectively, and used
loss scale hyperparameters of (1.9, 0.1) for CLIP loss and
self-distillation loss (see Tab. 15). Without extensive hyper-
parameter tuning, COSMOS significantly outperforms pre-
vious methods obtaining an accuracy of 37.1% in zero-shot
classification on ImageNet [10], and 53.1% R@1 score in
image-to-text retrieval on MSCOCO [27]. As mentioned in
the introduction, focusing solely on enhancing image rep-
resentation leads to sub-optimal results in VLMs, as shown
by SILC which reached an accuracy score of only 30.4%
on ImageNet and an R@1 score of 48.6% on image-to-text
retrieval on MSCOCO, highlighting the importance of self-
distillation with cross-modality representations.

E.2. Experiments with ViT-B/32 Architecture

In addition to the experiments with ViT-B/16 presented in
the main paper, we conducted the same experiments us-
ing the ViT-B/32 vision encoder architecture, as shown in
Tab. 5 and Tab. 6. Overall, the improvements achieved with
COSMOS are consistent with those observed in the main
table using ViT-B/16.

In the zero-shot retrieval tasks (Tab. 5), COSMOS
not only surpasses previous strong baselines (CLIP [40],
SigLIP [57], and DreamLIP [58]) trained on the same
datasets, but also exceeds the performance of OpenCLIP [7]
models trained on much larger datasets. Notably, COSMOS
trained on Merged-30M achieves 64.3% and 48.4% in
image-to-text and text-to-image R@1 scores on MSCOCO,
significantly outperforming DreamLIP (58.3% and 41.1%).
Furthermore, COSMOS trained on CC12M already demon-
strates higher accuracy compared to OpenCLIP trained on
LAION-2B dataset. These results highlight the effective-
ness of COSMOS in generating more fine-grained and
comprehensive multi-modal representations through cross-
modality self-distillation.

In the zero-shot classification tasks (Tab. 6), COSMOS
improves all metrics compared to CLIP [40] and
SigLIP [57] across most datasets, while achieving compa-
rable results to DreamLIP [58] on YFCC15M and Merged-
30M. DreamLIP [58] aligns visual patch embeddings with
positive text embeddings, promoting the learning of global
structure by image tokens, which enhances the performance
of classification task where the model focuses on global in-
formation. Although COSMOS optimizes local-to-global
correspondence to enhance the representation of local in-
formation through self-distillation, its performance is sim-
ilar to DreamLIP. Additionally, increasing the dataset size



Flickr30K MSCOCO
Image-to-text Text-to-image Image-to-text Text-to-image

Data Method R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CC3M

CLIP [40] 53.4 77.1 85.0 38.4 65.4 74.6 31.3 55.3 66.9 19.8 42.7 54.8
SigLIP [57] 56.4 78.9 85.7 40.2 66.5 76.0 30.8 55.5 66.8 20.6 43.9 55.4

DreamLIP∗ [58] 57.6 84.4 89.6 42.2 69.0 77.7 33.4 60.7 72.0 23.4 47.2 58.6
COSMOS 74.3 92.3 95.9 59.2 82.6 89.1 47.6 73.1 82.0 33.5 59.7 70.6

CC12M

CLIP [40] 76.8 92.9 95.8 60.3 83.4 89.4 50.6 76.5 84.3 34.9 61.5 72.3
SigLIP [57] 75.8 92.7 96.1 60.0 83.1 89.7 51.2 76.5 84.7 35.4 61.9 72.4

DreamLIP∗ [58] 78.7 94.6 97.6 61.0 83.9 89.8 53.4 77.1 84.7 36.7 62.3 72.3
COSMOS 86.5 97.5 98.7 69.8 89.3 94.1 59.6 82.3 89.4 43.0 69.5 78.9

YFCC15M

CLIP [40] 84.6 97.1 98.9 66.0 87.8 92.7 56.7 81.6 88.6 40.1 66.8 76.6
SigLIP [57] 82.5 97.4 98.5 66.9 87.8 92.3 56.3 82.0 89.0 40.0 66.7 76.9

DreamLIP∗ [58] 84.9 97.3 98.7 66.0 86.4 91.4 55.7 80.5 88.2 39.8 66.0 75.5
COSMOS 90.2 98.7 99.4 73.3 91.6 95.4 64.5 86.1 91.8 46.0 72.2 81.0

Merged-30M

CLIP [40] 85.6 96.7 99.0 69.5 89.9 94.3 59.3 83.1 89.9 42.8 69.3 79.0
SigLIP [57] 88.4 97.7 99.1 70.7 90.3 94.6 59.5 83.3 90.1 43.8 70.1 79.6

DreamLIP∗ [58] 87.2 97.5 98.8 66.4 88.3 93.3 58.3 81.6 88.8 41.1 67.0 76.6
COSMOS 89.9 98.8 99.3 76.1 92.8 96.2 64.3 86.5 92.0 48.4 74.2 82.6

LAION-400M OpenCLIP† [7] 79.7 95.0 97.6 60.9 84.8 90.7 51.7 76.6 84.9 33.7 59.4 69.9

DataComp-1B OpenCLIP† [7] 80.1 94.6 97.2 62.9 85.4 91.1 54.6 78.4 85.8 36.3 62.1 72.6

LAION-2B OpenCLIP† [7] 85.4 96.2 98.2 68.4 89.0 93.4 56.6 80.3 87.4 38.8 64.8 74.7

Table 5. Zero-shot image-text retrieval results in terms of R@1, R@5, and R@10 on the Flickr30K [54] and MSCOCO [27] datasets.
The vision encoder architecture is ViT-B/32. The best results are highlighted in bold. Results are reproduced with our setup for fair
comparison unless otherwise marked. ∗: Results copied from their work. †: Results obtained using their official pre-trained weights.

generally improves accuracy, suggesting that the total num-
ber of images is a crucial factor for achieving high perfor-
mance in classification. The results obtained with ViT-B/32
are consistent with those of ViT-B/16 from the main paper.

E.3. Experiment on PixelProse Dataset

To demonstrate the adaptability of COSMOS to various
captions, we employ PixelProse [46], a synthetic caption
dataset similar to DreamLIP. PixelProse filters and com-
bines data from CommonPool [16], CC12M [44], and Red-
Caps [11] to create over 16 million image and alt-text pairs.
They used Gemini 1.0 Pro [46] to generate new captions.
As shown in Tab. 7 and Tab. 8, we trained CLIP [40],
SigLIP [57], and COSMOS on PixelProse using the same
setup as before. The actual number of image-text pairs used
to train these models is detailed in Tab. 1.

In Tab. 7, COSMOS consistently outperforms the CLIP
and SigLIP models by a significant margin with both
ViT-B/16 and ViT-B/32 vision encoders. For instance,
COSMOS with ViT-B/16 achieves 62.4% and 43.4% in
R@1 scores for image-to-text and text-to-image retrieval on
MSCOCO. This performance even surpasses strong base-
lines from OpenCLIP [7], which achieve 56.5% and 37.9%
on LAION-400M, 58.2% and 39.8% on DataComp-1B, and
59.3% and 41.7% on LAION-2B (see Tab. 1 main).

Similarly, Tab. 8 shows that COSMOS outperforms pre-
vious baselines in the zero-shot classification tasks. No-
tably, COSMOS trained on PixelProse achieves the best av-

erage accuracy of 60.7% with ViT-B/16 and 58.0% with
ViT-B/32 among all models trained on the synthetic caption
datasets (e.g., CC3M, CC12M, YFCC15M, and Merged-
30M). However, the same models trained on PixelProse do
not achieve the best accuracy in retrieval tasks according to
Tab. 1 main and Tab. 5. We infer that this might be due to the
length and content of the captions used during the training.
DreamLIP utilizes three MLLMs to generate long synthetic
captions, resulting in longer captions than those generated
by PixelProse, which only uses Gemini Pro. Consequently,
models trained on longer and more varied captions are bet-
ter at capturing local information (i.e., better at retrieval
task), while models trained on relatively shorter and sim-
ilar captions are better at focusing on global objects in the
image (i.e., better at classification task). Investigating this
trade-off based on the nature of these long captions would
be an intriguing direction for future work.

E.4. Ablation Study on Training Efficiency

In Tab. 9, we report the GPU memory requirements and
training time based on the number of global and local crops,
along with the corresponding zero-shot performance. Com-
pared to CLIP, COSMOS requires 10-20% more training
time and GPU memory due to its teacher-student setup
(row 2 vs row 4, and row 3 vs row 5). As no gradients flow
into the teacher during training, COSMOS does not add too
much computational overhead while outperforming CLIP.

For COSMOS, we fixed the number of global crops for
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CC3M

CLIP [40] 14.2 73.5 37.8 39.3 2.4 1.4 14.4 16.9 66.4 10.7 19.7 27.0
SigLIP [57] 13.5 74.2 40.1 39.8 2.8 1.3 12.9 16.3 67.3 11.3 21.2 27.3

DreamLIP∗ [58] 16.1 82.0 45.4 41.3 2.5 1.0 13.9 18.8 64.4 14.1 25.9 29.6
COSMOS 24.9 80.0 51.9 51.5 3.8 1.5 25.2 29.9 77.2 21.9 33.0 36.4

CC12M

CLIP [40] 41.6 88.5 57.5 54.5 11.3 2.3 23.4 43.3 80.4 15.7 37.4 41.4
SigLIP [57] 41.9 87.5 59.3 55.2 11.8 1.6 27.3 41.8 80.9 18.4 37.8 42.1

DreamLIP∗ [58] 48.9 86.4 63.0 55.7 17.9 1.9 23.5 41.9 83.2 25.8 44.2 44.8
COSMOS 52.9 91.2 67.5 61.0 23.8 3.7 32.1 54.2 85.5 30.6 46.7 49.9

YFCC15M

CLIP [40] 38.9 86.2 58.2 53.3 7.1 4.0 23.9 27.6 76.8 38.0 38.9 41.2
SigLIP [57] 37.7 86.1 57.1 53.2 6.4 4.3 25.3 30.4 77.4 35.3 38.6 41.1

DreamLIP∗ [58] 51.7 87.9 60.7 54.8 9.4 7.1 26.8 36.3 79.6 48.6 46.6 46.3
COSMOS 40.3 84.9 57.0 54.6 13.5 5.9 31.3 38.6 82.1 47.8 48.1 45.8

Merged-30M

CLIP [40] 54.8 90.0 67.1 62.0 13.0 3.6 27.6 49.4 83.8 41.4 45.6 48.9
SigLIP [57] 52.8 90.8 66.1 63.4 15.0 5.4 29.9 47.8 84.4 35.7 46.5 48.9

DreamLIP∗ [58] 68.2 91.8 69.2 62.2 20.7 8.0 32.1 62.8 86.1 48.5 55.7 55.0
COSMOS 65.9 91.5 70.8 64.6 23.4 7.6 37.6 57.3 86.1 52.2 53.4 55.5

LAION-400M OpenCLIP† [7] 78.2 88.4 68.3 65.0 74.5 14.6 52.4 84.9 88.4 65.9 60.2 67.3

DataComp-1B OpenCLIP† [7] 86.3 95.6 80.4 67.3 87.3 24.8 57.2 90.2 91.6 73.2 69.2 74.8

LAION-2B OpenCLIP† [7] 82.7 93.6 75.8 68.7 86.1 24.5 55.8 90.4 90.5 71.6 66.5 73.3

2.5B MetaCLIP∗ [52] 82.7 95.2 77.7 66.8 77.4 27.0 58.9 90.9 92.8 69.9 67.6 73.4
Llip∗ [24] 84.1 95.5 80.8 68.6 82.2 34.9 58.8 92.3 92.9 74.8 67.5 75.6

Table 6. Zero-shot classification results in terms of top-1 accuracy on the ImageNet [10] and Food101 [2], CIFAR-10 [22], CIFAR-
100 [22], SUN397 [51], Stanford Cars [21], FGVCAircraft [33], DTD [8], Oxford Pets [39], Caltech101 [15], Flowers102 [37], and
ImageNet [10] datasets. The vision encoder architecture is ViT-B/32. The best results are highlighted in bold. Results are reproduced
with our setup for fair comparison unless otherwise marked. ∗: Results copied from their work. †: Results obtained using their official
pre-trained weights.

Flickr30K MSCOCO
Image-to-text Text-to-image Image-to-text Text-to-image

Method R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Model Architecture: ViT-B/32

CLIP [40] 76.1 92.1 95.7 57.5 81.8 88.6 49.4 73.7 82.2 32.0 57.1 68.2
SigLIP [57] 74.4 92.2 96.1 56.8 81.3 87.7 48.9 74.4 82.2 32.0 57.2 68.0
COSMOS 85.6 96.9 98.3 66.3 87.6 92.7 57.2 80.9 88.0 38.9 64.8 74.6

Model Architecture: ViT-B/16

CLIP [40] 85.2 96.2 98.6 66.3 87.8 93.2 56.9 79.7 87.4 38.0 64.1 74.5
SigLIP [57] 85.4 96.7 97.8 66.6 88.4 93.5 57.5 80.5 87.6 38.9 64.5 74.4
COSMOS 89.9 98.5 99.5 73.6 92.0 95.4 62.4 84.0 89.7 43.4 69.3 78.8

Table 7. PixelProse: Zero-shot image-text retrieval results in terms of R@1, R@5, and R@10 on the Flickr30K [54] and MSCOCO [27]
datasets. The best results are highlighted in bold. Results are reproduced with our setup for fair comparison.

both image and text to two, while varying the number of
local crops included during training (row 4-row 7). As a
result, increasing the number of local crops improves zero-
shot classification and retrieval tasks, achieving 37.1% ac-
curacy on ImageNet and 53.1% and 40.1% R@1 scores on
image-to-text and text-to-image retrieval on the MSCOCO
validation set with six local crops. The improvement is
most significant between zero and two local crops (row 4
vs row 5), with diminishing returns as more local crops are

added. GPU memory usage and training time also increase
with the number of local crops. Therefore, one could deter-
mine the optimal number of local crops based on the avail-
able computational resources.

E.5. Experiment on the Winoground Dataset

In addition to the visual perception and contextual under-
standing tasks presented in the main paper, we also evaluate
COSMOS on the Winoground dataset [47]. Each entry in
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Model Architecture: ViT-B/32

CLIP [40] 52.4 85.2 56.1 54.1 26.0 1.9 32.0 59.0 85.0 34.4 44.9 48.3
SigLIP [57] 53.8 85.7 59.4 55.6 25.2 3.1 32.1 64.1 84.8 37.1 44.6 49.6
COSMOS 66.3 89.9 67.4 60.4 47.0 4.4 37.3 76.6 89.5 45.1 54.3 58.0

Model Architecture: ViT-B/16

CLIP [40] 63.2 87.9 60.2 59.1 37.0 2.3 40.1 68.8 86.6 42.1 50.8 54.4
SigLIP [57] 63.4 87.5 58.6 60.5 36.2 3.5 37.8 63.5 87.0 43.4 51.1 53.9
COSMOS 72.1 92.1 71.9 60.8 53.0 3.6 43.4 74.4 90.1 46.8 59.6 60.7

Table 8. PixelProse: Zero-shot classification results in terms of top-1 accuracy on ImageNet [10] and 10 common downstream datasets.
The best results are highlighted in bold. Results are reproduced with our setup for fair comparison.

Method ImageNet MSCOCO Flickr30k Training

Top-1 I2T@1 T2I@1 I2T@1 T2I@1 Time Mem.

1 CLIP: 1 globals + 0 locals 24.5 38.9 26.8 69.1 51.2 3.8h 10.5G
2 CLIP: 2 globals + 0 locals 29.7 47.6 33.8 78.1 60.7 12.2h 16.3G
3 CLIP: 2 globals + 2 locals 31.3 49.6 35.9 78.4 62.1 17.6h 20.6G
4 COSMOS: 2 globals + 0 locals 31.0 50.1 35.4 80.9 63.2 14.6h 18.2G
5 COSMOS: 2 globals + 2 locals 34.8 51.5 38.5 82.7 65.9 21.4h 23.4G
6 COSMOS: 2 globals + 4 locals 36.3 52.3 39.6 83.5 67.4 26.5h 28.2G
7 COSMOS: 2 globals + 6 locals 37.1 53.1 40.1 84.1 68.6 31.7h 32.6G

Table 9. Ablation on the training efficiency of COSMOS. Total running time and peak memory usage per GPU are shown with different
configuration of global and locap crops. We also report zero-shot classification results on ImageNet [10] and zero-shot retrieval results on
Flickr30K [54] and MSCOCO [27]. We train our model (ViT-B/16) on four 4-GPU machines using the CC3M dataset with the batch size
of 1,024.

Method Data Size Text Image Group

CLIP [40] 30M 29.3 13.0 8.5
SigLIP [57] 30M 29.0 11.0 8.3
DreamLIP [58] 30M 27.8 15.8 11.5
COSMOS 30M 30.8 16.5 11.3

400M 25.5 11.5 7.8
OpenCLIP [7] 1B 29.8 8.8 7.3

2B 28.0 10.8 8.3

Table 10. Evaluation on Winoground [47].

the dataset consists of two images and two captions, where
the task is to correctly match the image-text pairs (25% by
random chance). Both captions contain an identical set of
words, but in different orders, assessing whether the model
possesses sufficient compositional understanding for chal-
lenging image-text pairs.

In Tab. 10, we compare COSMOS with three baselines
(CLIP [40], SigLIP [57], and DreamLIP [58]) as well as
OpenCLIP [7] models trained on larger datasets. The re-

sults of the OpenCLIP models indicate that scaling up the
size of pre-training datasets does not necessarily improve
the performance. In other words, large datasets alone can-
not ensure high compositional knowledge in VLMs. How-
ever, COSMOS outperforms all OpenCLIP models, sug-
gesting that our self-distillation and cross-modality learn-
ing effectively enhance the model’s contextual understand-
ing. COSMOS achieves 30.8% and 16.5% in text and image
scores, respectively, surpassing the previous best baselines
of 29.3% text score from CLIP and 15.8% image score from
DreamLIP, while achieving comparable results in terms of
group score.

E.6. Experiment on MLLM setting

In order to evaluate COSMOS on MLLM setting, we adapt
our vision encoder (ViT-B/16) to LLaVA framework [28].
We follow the training process of LLaVA v1.5 which con-
sists of feature alignment pre-training and visual instruc-
tion tuning. Various benchmarks are selected for compre-
hensive evaluation including ScienceQA [32], POPE [26],



Method Data Size ScienceQA POPE GQA TextVQA MMMU

CLIP [40] 30M 65.2 80.1 58.7 53.5 33.9
OpenCLIP [7] 400M 67.2 81.3 59.8 54.4 36.5
COSMOS 30M 67.8 83.2 60.4 55.3 36.8

Table 11. LLaVA v1.5 experiment. CLIP and COSMOS trained
on Merged-30M and OpenCLIP trained on LAION-400M.

GQA [20], TextVQA [45], and MMMU [56]. In Tab. 11,
COSMOS outperforms both CLIP trained on the same data
(Merged-30M) and OpenCLIP trained on LAION-400M,
which demonstrates the effectiveness of COSMOS on vi-
sual reasoning and compositional question answering.

E.7. Ablation Study on Text Cropping Strategy

Method ImageNet MSCOCO Flickr30K

Top-1 I2T@1 T2I@1 I2T@1 T2I@1

Masked text [25] 28.5 46.0 32.8 76.2 59.2
Summarized text [17] 33.9 51.7 37.8 81.0 65.3
Local within global 34.6 52.1 37.8 81.2 66.1
COSMOS 35.1 52.6 38.9 83.0 66.5

Table 12. Ablation on text cropping strategies. We compare
various text cropping methods in terms of zero-shot classifica-
tion results on ImageNet [10] and zero-shot retrieval results on
Flickr30K [54] and MSCOCO [27]. All models are trained on
CC3M with batch size 1,024 and ViT-B/16 image encoder.

In our paper, both global and local crops of captions are
randomly sampled from long synthetic captions. Typically,
global texts (1-5 sentences) are longer than local texts (1
sentence). The sampling processes of global and local crops
are entirely independent. Therefore, global captions may or
may not include local captions, similar to the image crop
method in SimCLR [6] and DINO [3]. While mismatches
can occur between global and local captions via random
sampling, as with the global and local crops of images, the
model can learn conceptual correspondences. For example,
for an image of a park, the global text may describe the park,
while the local text describes a dog. The model then learns
that ”park” and ”dog” are related in the text.

To validate our text cropping method, we compare var-
ious cropping strategies in Tab. 12, referring to previous
works. In the masked text setting, we randomly select one
to five sentences from a long caption and set it as the global
caption. Then, 15% of text tokens are replaced with the
[mask] token, which is used as the local caption. This
setting is similar to text self-supervised learning in De-
CLIP [25]. In the summarized text setting, we sample one
summary sentence as the global caption and one detailed
sentence as the local caption, similar to PyramidCLIP [17].
As the synthetic captions of DreamLIP [58] already distin-
guish between short and long captions, which generally de-
scribe the summary and details respectively, we directly use

their categories to construct global and local crops. In the
local within global setting, we ensure that local captions are
always included in global captions, while the rest remains
the same as our text cropping method. The results show that
our text-cropping strategy, inspired by image cropping, per-
forms the best, as it learns various conceptual similarities
via independent random sampling.

E.8. Additional Results on Semantic Segmentation

Method VOC20 City. Context59 ADE COCO-Stf.

CLIP [40] 11.3 5.0 4.5 1.3 2.8
SigLIP [57] 14.5 5.5 5.8 2.2 3.8
DreamLIP [58] 1.8 0.9 0.4 0.1 0.1
COSMOS 53.6 13.9 15.7 8.5 10.7

Table 13. Zero-shot semantic segmentation results in terms of
mean Intersection over Union (mIoU). The vision encoder archi-
tecture is ViT-B/16 and all models are trained on Merged-30M.

In addition to Table 3 in main paper, we compare
segmentation performance of COSMOS to CLIP [40],
SigLIP [57], and DreamLIP [58] in Tab. 13. Surprisingly,
DreamLIP performs poorly in every semantic segmentation
benchmarks, likely because its loss function weakens lo-
cal image representation by matching local visual patches
with global text. Ours is by far the best performing method,
likely due to its cross-modality embedding and local-to-
global matching, alleviating local feature suppression.

E.9. Additional SOTA Comparison

Method Data Size Batch Size MSCOCO Flickr30K

I2T T2I I2T T2I

VeCLIP [23] 300M 32k 67.8 48.9 91.2 76.3
MobileCLIP-B [49] 1B 65k 68.8 50.6 91.4 77.3
COSMOS 30M 4k 68.0 52.5 92.9 80.3

Table 14. Comparison to VeCLIP [23] and MobileCLIP [49]
in terms of zero-shot retrieval results on Flickr30K [54] and
MSCOCO [27].

In Table 1 and 2 in the main paper, COSMOS is com-
pared to other methods using multi-modal data augmenta-
tion including DreamLIP [58], LaCLIP [14], and MLLM-
A [30]. We additionally report the results of VeCLIP [23]
and MobileCLIP [49] for comparison. VeCLIP exploits
LLaVA [29] to generate detailed captions while Mobile-
CLIP utilizes CoCa [55] to generate multiple synthetic
cations. Although COSMOS is trained with much smaller
pre-training set and batch size, it outperforms other meth-
ods, demonstrating the efficient usage of synthetic captions
within our framework.



Method ImageNet MSCOCO Flickr30k

Top-1 I2T@1 T2I@1 I2T@1 T2I@1

CLIP w/ Aug. EMA 20.0 19.2 14.7 38.7 29.3

SILC (1.0, 1.0) 14.7 9.2 13.4 26.8 18.7
SILC (1.5, 0.5) 19.0 17.4 12.9 33.8 25.2
SILC (1.8, 0.2) 21.0 20.8 14.8 40.2 29.3
SILC (1.9, 0.1) 21.4 21.1 15.3 42.0 29.7
SILC (1.95, 0.05) 21.4 20.4 15.1 40.2 29.5

Table 15. Ablation on the loss scale of SILC [36]. SILC
with different loss scale (a,b) where the total loss is calculated as
Ltotal = aLCLIP + bLself-distill. Models are trained on CC3M with
the batch size of 1,024 and one global and one local crops are used
as augmentation.

E.10. Rescaling Loss in Previous Methods

In Tab. 15, we conduct an experiment to demonstrate the
effect of loss scaling in SILC [36], which also utilizes self-
supervision in contrastive vision-language pre-training. We
adjust the scale of the CLIP loss (a) and the self-distillation
loss (b), while maintaining their sum constant (i.e., a+ b =
2). For comparison, we also include CLIP [40] with the
same augmentation and EMA. Interestingly, a naive sum-
mation of the two losses (i.e., a = 1.0, b = 1.0) results
in a worse performance compared to CLIP, highlighting the
importance of selecting appropriate scaling parameters for
optimal performance. Consequently, a = 1.9 and b = 0.1
yield the best results, which we used to reproduce their re-
sults in Tab. 4.

Similarly, other works [12, 25, 35, 41] that integrated
self-supervised learning in VLM training adopt loss scaling
parameters to balance the learning speed between the con-
trastive objective and the self-distillation objective. This is
due to the different scales of the loss functions, as previ-
ous works often employ the symmetric InfoNCE loss [38]
for contrastive learning while using the cross-entropy loss
between masked inputs or global and local crops for self-
supervised learning. We unify the loss function with the In-
foNCE loss, eliminating the need for a scaling factor, since
the CLIP loss and the COSMOS loss are already updated
on the same scale.

References
[1] Nikita Araslanov and Stefan Roth. Single-stage semantic

segmentation from image labels. In CVPR, 2020. 3
[2] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.

Food-101–mining discriminative components with random
forests. In ECCV, 2014. 6

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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