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(a) Ablation about CAM threshold

Figure 7. Ablation study on CAM threshold. The performance
remains consistent around an mAP of 90%, with the peak near a
threshold value of 0.95.

(b) snowboard

(c) skateboard

Figure 8. CAM corresponding to different classes. The similar
class co-occur with human-feet, resulting similar CAM around the
feet.

6. Detailed Analysis
6.1. Ablation of CAM threshold

Fig. 7 illustrates the changes in mAP relative to variations
in the CAM threshold. The peak performance is observed
at a threshold value of 0.95, with consistently high perfor-
mance around this point. By using CAM-based local patch
acquisition, we can sample patches near around regions of
interest. As the threshold decreases, performance slightly
declines due to the larger local patches, which include more
and more regions. This transition shifts from sampling
around GT boxes to randomly sampled boxes which visu-
alized in the proof-of-concept study. This ablation result
aligns with the proof-of-concept study, demonstrating that
sampled boxes around GT reflect the key outcomes.

6.2. Per-class Performance

Tab. 4 shows the per-class average precision on the PAS-
CAL VOC 2012 dataset. We investigate the impact of the
CLIP debiasing and observe that the bias correction is effec-
tive for boosting the performance of biased classes. Further-
more, the performance of unbiased classes also improves
alongside biased classes. This is attributed to correcting
mispredicted biased classes, which would otherwise intro-
duce noise when predicted as other classes. However, the
amount of improved performance differs depend on the
classes. Regarding the performance of bottle, sofa, and
tv, the low performance for bottle can be attributed to its
greater CLIP bias (relatively lower probabilities). In addi-
tion, the fact that bottle frequently appears but its detection
rate remains low as illustrated in Fig. 10. On the other hand,
sofa and tv classes captured as top-1 are similar to GT quan-
tities.

Compared to CDUL, our CCD outperforms all classes
except bird and person. This might be due to the gradient-
alignment network training method from CDUL, which up-
dates the labels during the whole training process with train-
ing loss. Since the person label presents the most frequently
in the PASCAL VOC dataset (shown in Fig. 10), the train-
ing process is likely to update the person label to “Positive”.

Tab. 5 shows the per-class average precision on the MS
COCO dataset. Due to undisclosed hyperparameters, we
cannot reproduce the CDUL. Thus, we only compare the
results of CCD and CCD without debiasing. Our proposed
CLIP debiasing successfully boosts the performance of bi-
ased classes.

6.3. Bounding Box with Class Activation Mapping

Our method generates CAM bounding boxes for classes that
exceed a certain threshold, allowing for multiple bounding
boxes to be obtained around objects. Figure 11 shows sam-
ple bounding boxes extracted from an image in the PAS-
CAL VOC 2012 dataset. The first row represents the best-
case scenario, where multiple bounding boxes accurately
surround the target classes. The second row illustrates a
mixed scenario, with half of the boxes correctly identifying
the target classes and the other half missing them. The third
row represents a failure case, where only a single bound-
ing box is close to the target object. These bounding boxes
are then cropped and passed through CLIP to generate local
labels.



Table 4. AP and mAP (in %) of unsupervised methods on PASCAL VOC 2012 dataset for all classes. The best score is in bold.

Methods aero

bicycle

bird

boat bottle

bus

car

cat

chair cow

table

dog

horse bike

person

plant

sheep

sofa train

tv

mAP

CDUL 90 927 977 918 725 954 847 986 764 919 732 O 920 94l 930 675 942 742 977 80 886
wloDebias 984 928 976 915 770 960 839 987 771 934 727 965 9. 93.7 873 688 940 730 983 895 8838
CCD (ours) 9.1 936 976 924 776 960 861 990 790 952 748 977 960 954 892 7201 953 766 981 920 901

Table 5. AP and mAP (in %) of unsupervised multi-label classification on MS COCO 2014 dataset for all classes.

Class w/o DB Ours ‘ Class w/o DB Ours ‘ Class w/o DB Ours ‘ Class w/o DB Ours ‘ Class w/o DB Ours
person 81.7 82.0 | horse 90.4  91.7 | baseball bat 89.4  89.0 | carrot 48.7  64.1 microwave 634 658
bicycle 629 69.8 | sheep 947 943 | baseball glove 83.0 869 | hotdog 673 69.5 | oven 693  67.6
car 59.2 613 | cow 874 89.4 | skateboard 95.8 96.2 | pizza 92.1 93.6 | toaster 1.9 5.7

motorcycle 86.3 88.8 | elephant 974  98.0 | surfboard 93.0 942 | donut 76.1  79.2 | sink 83.8 83.4
airplane 955 96.8 | bear 958 94.8 | tennis racket 98.6  98.6 | cake 77.4 75.5 | refrigerator 68.4  70.1
bus 813 81.7 | zebra 97.8  99.0 | bottle 40.1 45.0 | chair 50.3 54.2 | book 282 260
train 947 955 | giraffe 97.9 989 | wine glass 56.5 64.1 | couch 68.3 71.7 | clock 746 762
truck 559 54.8 | backpack 20.7 329 | cup 36.2 38.0 | potted plant 375 453 | vase 65.8 674
boat 81.9 859 | umbrella 748 787 | fork 42.1 533 | bed 79.5 79.6 | scissors 476 4938
traffic light 742 769 | handbag 20.6  25.7 | knife 32.8 38.6 | dining table 48.8  48.1 | teddy bear 772 842
fire hydrant 78.1 792 | tie 68.5 70.3 | spoon 33.0 40.2 | toilet 95.6  96.3 | hair drier 2777 222
stop sign 723 73.1 | suitcase 62.8 65.6 | bowl 347 385 | tv 74.6  77.4 | toothbrush 57.3 59.5
parking meter 60.8  63.7 | frisbee 88.1 909 | banana 74.5 77.6 | laptop 80.5 842

bench 52.0 53.6 | skis 91.6 913 | apple 459 469 | mouse 48.1 459

bird 69.4 755 | snowboard 72.8 75.9 | sandwich 70.0  73.9 | remote 492 583

cat 91.4  93.6 | sports ball 339 30.1 | orange 52.6  62.1 | keyboard 753 711 mean 677 703
dog 76.8 819 | kite 95.0 939 | broccoli 89.7  90.3 | cell phone 53.0 56.7 ’ i

7. Dataset views. This redundant information results in noisy pseudo-

7.1. Probability Distribution

Fig. 9 illustrates the CLIP probability distribution for MS
COCO and NUSWIDE datasets. It is evident that the mean
probability of NUSWIDE is comparatively lower than that
of MS COCO. This discrepancy likely contributes to the
lower classifier performance observed in NUSWIDE com-
pared to MS COCO. Additionally, we note that the same
“class name” exhibits similar low mean probability across
both datasets (e.g. the probability of person is 0.63 for
COCO, 0.67 for NUSWIDE). This observation underscores
the presence of bias inherent to the CLIP model and text
embedding, irrespective of the dataset.

7.2. Label Distribution

Fig. 10 shows the label distribution for PASCAL VOC
2012. We can observe that the label distribution of GT
and Single Positive Label (SPL) is similar. However, the
CLIP generated label shows does not reflect GT label’s dis-
tribution. In particular, the number of person prediction is
relatively lower. This result combine with the CLIP bias,
making the prediction of biased class harder. This results
support that CLIP shows biased prediction.

8. Limitation

A limitation of proposed method is that the generated lo-
cal views often struggle to distinguish between co-occurring
objects, an issue inherited from CAM. In Fig. 8, the activa-
tion map of skies and snowboard focus on the human feet.
This phenomenon makes them potential candidates for local

labels, reducing overall performance. Moreover, in Fig. 11,
the second row shows the bottle (the 1st image) or dinning
table (the 4th image) generates false local patches. Devel-
oping an improved local view proposal method to better
handle noisy inferences and focusing on the target objects
will be an important direction for future work.

In addition, it is evident from Tab.l in main text
that all unsupervised multi-label classification methods ex-
hibit relatively degraded performance on MS COCO and
NUSWIDE datasets. Both datasets share the characteristic
of having a larger number of classes (80 and 81, respec-
tively) compared to the PASCAL VOC datasets (20 classes).
This performance degradation can be attributed to the sim-
plistic prompt, “a photo of the [class name],” which might
not accurately represent the target classes. For instance, the
performance of initial labels of the training sets for PAS-
CAL VOC 2012, MS COCO, and NUSWIDE is 85.3%,
65.4%, and 41.2%, respectively.

This suggests that CLIP predictions already show vary-
ing performance across datasets with different class counts
(Although MS COCO and NUSWIDE have similar class
counts, the inclusion of “none images” in NUSWIDE exac-
erbates the degradation of CLIP performance). To address
this limitation, manipulating the text embeddings of each
dataset may be necessary.

For “none images,” the pseudo-labels should be set to
zero. To address this, we suggest filtering out the probabil-
ity of “none images,” as a possible solution. Specifically, we
can identify irregular and noisy probability patterns from
those images and then apply thresholding to filter them out.
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(a) CLIP probability distribution at MS COCO
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Figure 9. CLIP probability distribution for other datasets: (a) The mean class-wise probability of MS COCO. (b) The mean class-wise
probability of NUSWIDE. The probability distribution showcases the presence of CLIP bias in other datasets.
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Figure 10. The label distribution of GT, Single Positive Label, CLIP generated at PASCAL VOC 2012. For the CLIP generated label,
we count top-1 as predicted. Single Positive setting reflects the label distribution of GT labels, which cannot reflect the real behavior of
labelers.
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Figure 11. The sample bounding box with Class Activation Mapping. The first row shows optimal case, where every boxes capture gt-
related objects. The second row illustrates mixed case, where half of the boxes captures person class. The third row depict failure case,
where only one box contains person class. These multiple local inferences around objects help make better pseudo-labels.
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