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Supplementary Material

A. Implementation Details

Table B provides an overview of the hyperparameter set-
tings used for each dataset: THUMOS14 [14], Activi-
tyNet v1.3 [10], and HACS-Segment [50]. The hyperpa-
rameter settings are divided into four main categories: gen-
eral model configuration, query selection, encoder settings,
and training configuration. Additionally, this section de-
scribes how the video snippets were processed and the hard-
ware configurations used in our experiments.
General Settings The general model configuration defines
parameters for the architecture, including model dimension,
feedforward network dimension, number of encoder and
decoder layers, and attention settings. For THUMOS14,
we use a model dimension (D) of 512, while a smaller
value of 256 is applied to ActivityNet v1.3 and HACS-
Segment, reflecting their lower temporal complexity. The
feedforward network (FFN) dimension (Dh) is set to 2048
across all datasets to ensure sufficient capacity. Both the
encoder (LE) and decoder (LD) consist of 6 layers. For
self-attention and deformable attention, 8 attention heads
are used, with 4 sampling points per head in the deformable
attention mechanism. Dropout is disabled for all datasets.
Query Selection THUMOS14 [14] contains videos with a
wide range of action durations, requiring a flexible query
selection strategy. For this dataset, we adopt a top-k se-
lection approach, where k is set to 50% of the total num-
ber of multi-scale features across all levels

∑L
l=1 Tl. This

approach is consistent with the adaptive query selection
(AQS) [15], which also leverages a variable number of
queries based on the video features. In contrast, for Activ-
ityNet v1.3 [10] and HACS-Segment [50], we use a fixed
number of 100 queries per video. This is because these
datasets consist of videos with more uniform durations than
the variable-length videos in THUMOS14.
Training Settings We use AdamW [30] as the optimizer
across all datasets. For THUMOS14, a learning rate of
0.00005 is used, which is lower than the 0.0001 applied to
ActivityNet v1.3 and HACS-Segment, reflecting the higher
complexity of THUMOS14. A weight decay of 0.05 is used
for ActivityNet v1.3, while a smaller value of 0.0001 is ap-
plied to THUMOS14 and HACS-Segment to balance reg-
ularization and learning stability. Gradient clipping is ap-
plied to all datasets with a maximum norm of 0.1, ensur-
ing numerical stability during training. Batch sizes are set
to 4 for THUMOS14 and 16 for both ActivityNet v1.3 and
HACS-Segment, reflecting differences in model dimension-
ality and dataset characteristics.

Loss Coefficients For the matching loss Lmatch, the classifi-
cation loss (Focal Loss [24]) has a coefficient of 2 for THU-
MOS14, compared to 1 for ActivityNet v1.3 and HACS-
Segment, due to the high class overlap in THUMOS14. The
GIoU [33] loss coefficient is consistently set to 2 across all
datasets. Log-width loss is omitted for THUMOS14 but
included for ActivityNet v1.3 and HACS-Segment with a
coefficient of 1, as precise action width estimation is more
critical in these datasets.
Feature Extraction We follow the preprocessing strate-
gies in prior works [6, 15, 47] to extract video features.
For THUMOS14 [14], I3D [5] and InternVideo2 [41] fea-
tures are extracted using 16-frame snippets with a stride
of 4 frames. For ActivityNet v1.3 [10] and HACS-
Segment [50], InternVideo2 [41] features are extracted us-
ing 16-frame snippets with a stride of 8 frames. For Activ-
ityNet v1.3 [10], R2+1D [38] features are extracted using
16-frame non-overlapping snippets, as follows in TSP [2].
Hardware Configuration All experiments were conducted
using a single NVIDIA A100 GPU.

B. Additional Experiments
Analysis on Computational Complexity Table A shows
the comparison of computational complexity between state-
of-the-art methods and our method with InternVideo2 [41]
features on THUMOS14 [14]. For a fair comparison, in-
ference times are calculated per video for all models, and
all results are measured on an NVIDIA A100 GPU. Our
method demonstrates competitive inference speed for the
detection phase, comparable to anchor-free detectors such
as ActionFormer [47] and ActionMamba [6]. Moreover,
DiGIT significantly reduces post-processing time compared
to anchor-free detectors. This efficiency is achieved as
query-based detectors leverage their set-prediction mecha-
nism, which ideally eliminates the need for post-processing
steps like NMS. Compared to TE-TAD and TadTR, DiGIT
exhibits slight increases in memory usage and processing
time due to its enhanced model capacity.
DETAD [1] Analysis Fig. A provides a DETAD [1] anal-
ysis on false positive errors for various models, including
TadTR [27], TadTR enhanced with our MDGE and CAID,
TE-TAD [15], and our DiGIT. The analysis divide the error
types into categories such as background errors, localiza-
tion errors, confusion errors, and wrong label errors. Our
method demonstrates a significant reduction in false posi-
tive localization errors compared to other models, indicat-
ing its ability to correctly localize action boundaries.



Head Type Method
Inference Time (ms) Peak Memory

(GB)Detector PostProcess Total

Anchor-free ActionFormer [47] 42.47±45.40 31.75±23.36 74.22±50.60 3.04
ActionMamba [6] 28.76±43.44 31.75±24.27 60.51±49.15 2.88

Query-based

TadTR [27] 92.07±93.30 17.39±10.00 109.64±103.92 1.24
TadTR [27] + Ours 93.79±97.71 18.29±10.33 111.22±108.68 1.73

TE-TAD [15] 27.71±3.72 5.61±16.20 33.32±17.55 2.48
DiGIT 31.27±5.27 8.08±18.50 39.35±19.24 3.52

Table A. Analysis of computational complexity with InternVideo2 features on THUMOS14. The table compares inference times for
the detection phase, post-processing phase, and total runtime for state-of-the-art anchor-free and query-based methods.
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(a) TadTR [27]
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(b) TadTR [27] + Ours
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(c) TE-TAD [15]
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(d) DiGIT

Figure A. False Positive Analysis. Each row compares DETAD error analysis for various models: (a) TadTR [27], (b) TadTR with our
MDGE and CAID, (c) TE-TAD [15], and (d) DiGIT.



Dataset THUMOS14 [14] ActivityNet v1.3 [10] HACS-Segment [50]

General Setting

Model Dim. (D) 512 256 256
FFN Dim. (Dh) 2048 2048 2048

Num. Enc. Layer (LE) 6 6 6
Num. Dec. Layer (LD) 6 6 6
Num. Self-Attn. Head 8 8 8

Num. Deform. Attn. Head (the number of m) 8 8 8
Num. Deform. Attn. Point (the number of p) 4 4 4

Dropout 0 0 0

Query Selection Setting

Query Selection Type Ratio Fix Number Fix Number
Top-k Selection Ratio 0.5 - -

Max Num. Queries (max Nq) 900 - -
Num. Queries (Nq) - 100 100

MDGE Settings

Num. Dilated Conv. (Nd) 2 2 2
Kernel Size 11 11 11

Training Setting

Optimizer AdamW [30] AdamW [30] AdamW [30]
Learning Rate 0.00005 0.0001 0.0001
Weight Decay 0.0001 0.05 0.0001

Batch Size 4 16 16
Gradient Cliping 0.1 0.1 0.1

Loss Coefficient for Lmatch

Classification Loss (Focal Loss [24]) 2 1 1
GIoU [33] Loss 2 2 2
Log-Width Loss 0 1 1

Table B. Hyperparameter Settings across THUMOS14, ActivityNet v1.3, and HACS-Segment. The table presents model parame-
ters, query selection criteria, encoder settings, and training configurations for each dataset. ”Model Dim.” and ”FFN Dim.” refer to the
dimensionality of model and feedforward network layers, respectively. ”Num. Deform. Attn. Head” and ”Num. Deform. Attn. Point”
represents the number of attention heads and sampling points in the deformable attention. ”Num. DilatedConv.” and ”Kernel Size” specify
the configurations in MDGE. The query selection method is adapted per dataset, with top-k selection used for THUMOS14 and fixed query
counts for ActivityNet v1.3 and HACS-Segment.
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