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1. Experimental Details
Implementation Details. When training the Difference
tokens, we use a learning rate of 0.1 over 3000 steps, with a
weight decay of 0.1. We also set the number of Difference
tokens to 5 and the interpolation ratio α to 0.8, respectively.
When obtaining the optimized prompts for images A and
A′ (promptA and promptB in Algorithm. 1, we follow the
same settings as PEZ [10], using 10 tokens. For inference,
we apply DDIM inversion [8] to generate a noisy xt and
then performed denoising to create B′. During this process,
we set the start step to 45 out of 50 steps, though for cases
requiring greater changes, up to 40 steps can be used. Ad-
ditionally, we use a classifier-free guidance scale of 7.5.

Baselines. We compare Difference Inversion with three
baselines: DIA [9], Analogist [3], and VISII [5]. Each
baseline follows the original implementation as described
in their respective papers. For DIA, we set the CLIP fea-
ture parameters sc to 12.0 and the strength of the analogy st
to 0.23684210526315788. In the case of Analogist, while
the original paper utilizes the paid GPT-4V API, we instead
used MiniCPM-V [11]1, an open-source Vision Language
Model (VLM) with similar performance to GPT-4V, due to
its publicly accessible nature. For VISII, we use the same
settings as those described in the original paper.

2. Additional Results
Ablation Test on λtc and λclip. We also conducted ab-
lation experiments on the hyperparameters λtc and λclip in
Eq. 10 for the Token Consistency Loss and CLIP Loss. Ul-
timately, we set the value of λtc to 0.01 and λclip to 6. The
results for the scale of each hyperparameter can be found in
Fig. 1 and Fig. 2, respectively.

More Complex tasks. We mainly use the InstructPix2Pix
dataset to efficiently evaluate the A : A′ = B : B′ relation-
ship. Since the dataset contains many examples where A′

images are generated from A images, we have adopted it
as our main benchmark. However, our approach performs
well not only when the correspondence between A and A′

is explicit, but also when it is implicit, as in the case of DIA.
Fig. 3 presents results for more complex examples in which
the transformation from A to A′ is implicit, meaning that
A′ is not directly generated from A.

1https://huggingface.co/openbmb/MiniCPM-Llama3-
V-2_5
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Figure 1. Visualization of the ablation study on λtc. We finally
use 0.01 as the value for λtc.
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Figure 2. Visualization of the ablation study on λclip. We finally
use 6 as the value for λclip.

Application of the same delta to multiple B. Since our
approach extracts the difference between A and A′ as dis-
crete tokens, these tokens can be applied in a plug-and-play
manner to multiple B images. We include additional exper-
imental results demonstrating this capability in Fig. 4.

Qualitatively Results. Fig. 6 and Fig. 7 provide additional
qualitative results. Furthermore, to demonstrate that our
methodology is applicable not only to InstructPix2Pix dataset
but also to a broader range of editing domains, particularly
real-world datasets, we compare our approach with existing
baselines using the MagicBrush [12] dataset. Note that, un-
like InstructPix2Pix, the MagicBrush dataset contains only
1700 samples and has minimal overlap in text instructions,
requiring us to manually select and pair B images to form
triplets with A and A′. The results can be seen in Fig. 8 and
Fig. 9.

3. Evaluation Details
Human Evaluation. For human evaluation, we survey a
total of 60 participants with 50 examples. Each question
is presented in a four-choice format, where participants are
asked to select the most appropriate image as B′. The or-
der of the options was randomized, and the format of the
questionnaire can be found in Fig. 10.

VLMs Evaluation. We evaluate not only humans but also
large-scale VLMs with strong reasoning capabilities. Un-
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Figure 3. More complex tasks. Left: More complex examples
used in DIA. Right: More complex examples generated using In-
structPix2Pix.
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Figure 4. Application of the same delta to multiple B. Once a
difference token is extracted from A and A′, it can be applied to
multiple B images to generate their corresponding B′ images.
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Figure 5. Colorizing the MNIST example in the form of an
Image Analogy Formulation. Despite coloring the digits 2 and 5
with identical RGB values, the CLIP similarity between A → A′

and B → B′ remains approximately 0.4, which is significantly
lower than the ideal value of 1.

like human evaluation, we use a two-choice format, with the
order of the options randomized. To assess whether large-
scale VLMs are suitable as an evaluation metric, we verify
if the model select the same answer when the order of the
options for the same question is shuffled. Additionally, we
examine the reasoning capability behind the chosen answer
to ensure that the model understand the question correctly
and select the right option. Detailed prompts and reasoning
capabilities can be found in Fig. 11.

4. Inherited Limitations of CLIP space
Similar to many CLIP-based guidance methods [2, 4, 6], we
utilize image and text embeddings in CLIP space [7] to ex-
tract the Difference between A and A′. However, as shown
in the toy experiment in Fig. 5, we observe that even for an
intuitive task like adding color to the MNIST [1] dataset, the
cosine similarity between A → A′ and B → B′ is as low as
approximately 0.4. Although we are able to refine the Delta
through interpolation, the CLIP space demonstrated surpris-

ingly low similarity for accurate differences, contrary to hu-
man intuition. We anticipate that if a model with a better
embedding space than CLIP emerges in the future, such a
method could be explored further.
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Make�it�pixel�art
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make�it�a�black�and�
white�picture
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into�a�desert

have�it�be�a�pizza
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make�the�fisherman�a�
woman

Figure 6. Additional qualitative comparison to baseline methods on the InstructPix2Pix dataset.
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Make�it�a�ski�resort

make�the�tree�into�a�
palm�tree
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Figure 7. Additional qualitative comparison to baseline methods on the InstructPix2Pix dataset..
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change�the�book�bag
�into�a�suitcase

Figure 8. Qualitative comparison to baseline methods on the MagicBrush dataset.
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by�a�teddy�bear

Let�the�airplane�
eject�smoke

One�of�the�plates�should�
be�with�donuts

What�if�there�is�a�child�
by�the�man's�side

add�cherries�on�top

let�the�child�cry

Figure 9. Qualitative comparison to baseline methods on the MagicBrush dataset.



Figure 10. Google Form Questionnaire for Human Evaluation.



Figure 11. Prompts and Reasoning Capability for VLM Evaluation.
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