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A. Additional Material: Project Page & Presentation Video
We have described our results in an easily accessible manner on our project page, where a brief presentation video is also
available. The link to the project page is as follows: https://micv-yonsei.github.io/cass/.
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B. Detailed Method
B.1. Energy-based Low-rank Approximation

Algorithm 1 Optimal Rank k Selection with Low-Rank Eigendecomposition
Input: Adjacency matrix A ∈ Rn×n, energy threshold η, initial rank q0, step size ∆q
Output: Optimal rank k, eigenvectors U , eigenvalues Σ
Set qmax ← n ; // Maximum allowable rank for symmetric matrices
Set q ← q0
if ∥A−A⊤∥F > ϵ then

Error: Input matrix is not symmetric
while q ≤ qmax do

Approximate A with rank-q components:

A ≈ UqΣqU
⊤
q ,

where Uq contains the top q eigenvectors and Σq = diag(λ1, λ2, . . . , λq)
Compute total energy: Etotal ←

∑q
i=1 λi

Compute cumulative energy: Ecumulative(k)←
∑k
i=1 λi

if Ecumulative(k)
Etotal

≥ η for some k ≤ q then
return k, Uk,Σk

Increment q ← q +∆q

Set q ← qmax ; // Fallback to maximum rank if threshold not met
return q, Uq,Σq

We leverage the Energy-based Low-rank Approximation method, as outlined in Algorithm 1, which efficiently captures key
object-level contextual features within the VFM graph. The method approximates the i-th head attention adjacency graph
AiVFM using the rank-q approximation as

AiVFM ≈ UqΣqU
⊤
q , (1)

where Uq contains the top q eigenvectors, and Σq = diag(λ1, λ2, . . . , λq) consists of the top q eigenvalues. This selective
focus on the most significant components highlights critical object relationships while discarding noise. By iteratively in-
creasing the rank q, the algorithm efficiently captures the graph’s essential structure with minimal complexity by examining
cumulative energy. Our algorithm evaluates whether the retained energy satisfies the threshold η as

Ecumulative

Etotal
=

∑k
i=1 λi∑q
i=1 λi

≥ η, k ≤ q. (2)

By adaptively identifying the smallest rank k that meets this criterion, the method ensures a compact and meaningful repre-
sentation. Thus, our low-rank approximated VFM graph is expressed as

ÃiVFM = UkΣkU
⊤
k . (3)

Our proposed combination of selective eigendecomposition, energy-based evaluation, and adaptive rank selection enables the
algorithm to efficiently preserve object-level contextual features while minimizing computational costs. In the next section,
we refine the computed low-rank components (i.e., the eigenvalues and eigenbasis), through dynamic eigenscaling. This
approach further enhances their transformation into more object-centric representations, enabling improved precision and
robustness in feature modeling.

B.2. Dynamic Eigenscaling
We propose a dynamic eigenscaling function ϕ to refine the eigenvalues Σk from Eq. (3). This function amplifies larger
eigenvalues while suppressing smaller ones, highlighting dominant components in the graph structure and reducing the
influence of noise. The scaled eigenvalues are computed as

Σ′
k = ϕ(Σk) =

Σk − Σmin

Σmax − Σmin
· scaled range + (2− ϵ) · Σmin, (4)
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where Σmin = min(Σk), Σmax = max(Σk), and scaled range = ϵ · Σmax − (2 − ϵ) · Σmin. We fix ϵ into 1.5. After applying
our proposed dynamic eigenscaling function, our final tailored VFM graph is as

ÄiVFM = UkΣ
′
kU

⊤
k := Ukϕ(Σk)U

⊤
k . (5)

This transformation dynamically adjusts the eigenvalues to retain the graph’s most significant features, enhancing object-level
contextual representation while minimizing the impact of less relevant components.

B.3. Hierarchical Grouping of Text Embeddings

Algorithm 2 Pseudo-code of hierarchical clustering in Python style.

from sklearn.metrics.pairwise import cosine_distances
from scipy.cluster.hierarchy import linkage, fcluster
from scipy.spatial.distance import squareform

def hierarchical_clustering(text_embeddings, h_threshold):

# Compute cosine distance matrix
distance_matrix = cosine_distances(text_embeddings)

# Convert distance matrix to condensed form
condensed_matrix = squareform(distance_matrix)

# Perform hierarchical clustering using Ward’s method
Z = linkage(condensed_matrix, method=’ward’)

# Form flat clusters based on the threshold
clusters = fcluster(Z, t=h_threshold, criterion=’distance’) - 1

return clusters

We provide details on grouping class prompts to identify semantically related object class prompts (e.g., motorcycle and
bicycle) within the Object-Guided Text Embedding Adjustment module. As described in Algorithm 2, we compute the
semantic distance between user-defined text prompts by measuring the cosine distance of their CLIP text embeddings in
the CLIP latent space, forming a distance matrix. Next, the distance matrix is converted into a condensed form to facilitate
hierarchical clustering using Ward’s method, which minimizes variance within clusters. Finally, clusters are formed by
applying a predefined height threshold to the hierarchical tree, ensuring that semantically similar class prompts are grouped
together. This enables the identification of class prompt-level relationships that are leveraged to refine the text embeddings
towards object-specific semantics.

C. Additional Experiments
C.1. Additional Evaluation Results
In this section, we provide additional evaluation results including qualitative evaluation (C.1.1), real-world open-vocabulary
semantic segmentation result (E.2), and scale-up version of CASS (C.1.2).

C.1.1. Additional Qualitative Evaluation
We present additional qualitative evaluation results: Fig. 3 illustrates results on PASCAL VOC (V20 & V21) [5], Fig. 4 on
COCO (C-Stf & C-Obj) [2], Fig. 5 on PASCAL Context (PC59 & PC60) [11], and Fig. 6 on both ADE20K (ADE) [18]
and Cityscapes (City) [4]. Note that all the results in this subsection are presented without mask refinement steps, such as
PAMR [1] or DenseCRF [9], to ensure a fair comparison and to evaluate the capability of the model itself.

C.1.2. Scale-up Version
The zero-shot object classification performance of CLIP [14] improves as the capacity of CLIP increases. Unlike the main
experiment, where all methods were standardized using CLIP ViT-B/16 for a fair comparison, here we compute the object
presence prior using CLIP ViT-L/14 (i.e., the scaled-up version), as reported in Table 1. Since CaR [15] also classifies the
proposed mask using CLIP’s global image embedding for classification, we compared our method under the same conditions
as CaR. The encoder used for patch-wise dense representation (i.e., FCLIP in our main manuscript) is referred to as the Feature
Encoder, while the encoder for encoding CLIP visual embedding vector (i.e., vCLIP) is referred to as the [CLS] Encoder.
The CLIP visual embedding vector serves as an object presence prior in our approach and as a mask proposal classifier in
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Table 1. Performance of scale-up version of CASS.

Model
Feature
Encoder

[CLS]
Encoder V21 PC60 C-Obj V20 PC59 ADE Avg

CaR [15] CVPR’24 ViT-B/16 ViT-B/16 48.6 13.6 15.4 73.7 18.4 5.4 29.2
CASS ViT-B/16 ViT-B/16 65.8 36.7 37.8 87.8 40.2 20.4 48.1

CaR [15] CVPR’24 ViT-B/16 ViT-L/14 63.7 29.4 35.1 91.4 38.4 16.9 45.8
CASS ViT-B/16 ViT-L/14 66.3 37.0 38.3 89.3 40.7 20.7 48.7

CaR. For this experiment, we use datasets that are reported in CaR and evaluate with the mIoU metric. Note that we exclude
a mask refinement step (e.g., PAMR [1] or DenseCRF [9]) for a fair comparison.

When using CLIP ViT-L/14 as the [CLS] encoder in our CASS, we observe a noticeable performance improvement
compared to the ViT-B/16 configuration. Furthermore, our approach consistently outperforms CaR across all benchmarks
under both encoder settings. Notably, when comparing models fairly by using the same [CLS] encoder configuration as CaR
(ViT-B/16), CaR experiences a significant drop in performance, particularly on datasets such as PC60 and ADE. In contrast,
our method demonstrates robust performance in both settings, maintaining high accuracy and adaptability regardless of the
encoder used. This highlights the stability and effectiveness of our method, especially in handling variations in encoder
configurations, demonstrating its robustness compared to CaR.

C.2. Additional Ablation Study
For ablation studies, we use representative datasets for segmentation tasks: PASCAL VOC (V21), PASCAL Context (PC59),
and COCO-Stuff (C-Stf), following [17].

C.2.1. Ablation: VFM Backbones

Table 2. Ablation results with different VFM backbones. For the CLIP visual encoder, ViT-B/16 is used.

Model
V21 PC59 C-Stf Avg.

mIoU
Avg.
pAcc

mIoU pAcc mIoU pAcc mIoU pAcc

DINOv1
ViT-B/8

LaVG [7] ECCV’24 62.1 89.3 34.7 58.9 23.2 39.1 40.0 62.4
ProxyCLIP [10] ECCV’24 59.1 86.6 38.8 63.4 26.2 43.4 41.4 64.5
CASS 65.8 90.1 40.2 65.0 26.7 43.6 44.2 66.2

DINOv1
ViT-B/16

LaVG [7] ECCV’24 61.5 88.9 34.6 58.9 22.8 38.8 39.6 62.2
ProxyCLIP [10] ECCV’24 56.6 85.8 37.4 62.0 25.1 42.2 39.7 63.3
CASS 64.3 89.1 38.9 63.8 26.1 43.1 43.1 65.3

DINOv2
ViT-B/14

LaVG [7] ECCV’24 25.3 75.3 25.1 49.3 17.3 34.4 22.6 53.0
ProxyCLIP [10] ECCV’24 57.1 85.2 37.3 61.4 25.3 42.3 39.9 63.0
CASS 63.0 88.6 38.1 62.2 25.3 42.0 42.1 64.3

Table 2 presents the results with various VFM backbones [3, 12], including DINOv1 ViT-B/8, DINOv1 ViT-B/16, and
DINOv2 ViT-B/14. Among these, DINOv1 ViT-B/8 serves as the backbone for our main results. In this experiment, we use
ViT-B/16 as the CLIP visual encoder. To ensure a consistent and fair comparison, we include LaVG [7] and ProxyCLIP [10]
as baselines, as both utilize DINO as their backbone model. Since LaVG does not report performance on DINOv1 ViT-
B/16 and DINOv2 ViT-B/14, we report reproduced results. Notably, LaVG employs spectral techniques, particularly graph
partitioning, making it directly comparable to our approach, which also builds on spectral methods. The results show that our
method consistently outperforms the baselines across all backbones, demonstrating its robustness and adaptability to different
VFMs. In particular, compared to LaVG, which uses graph partitioning for spectral techniques, our method more effectively
leverages spectral methods by distilling low-rank components into CLIP via spectral-based graph matching, offering a more
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advanced solution for training-free OVSS.

C.2.2. Ablation: Feature Type

Table 3. Comparison of features used for constructing attention graphs.

VFM CLIP V21 PC59 C-Stf Avg.
mIoU

Avg.
pAccmIoU pAcc mIoU pAcc mIoU pAcc

FF QQ 51.1 81.8 33.0 57.2 21.8 39.1 35.3 59.4
FF QK 44.6 77.3 30.2 54.0 19.9 37.1 31.6 56.1
FF KK 60.8 87.6 37.9 62.1 25.2 42.0 41.3 63.9

QQ QQ 57.1 84.9 36.5 61.2 23.9 41.5 39.2 62.5
QQ QK 50.9 53.1 33.7 43.6 21.9 30.2 35.5 42.3
QQ KK 64.9 89.3 39.7 64.5 26.4 43.5 43.7 65.8

QK QQ 33.7 58.1 25.2 45.7 17.3 32.4 25.4 45.4
QK QK 30.7 53.1 23.2 43.6 15.5 30.2 23.1 42.3
QK KK 29.0 49.1 22.1 41.7 15.0 28.6 22.0 39.8

KK QQ 64.9 89.3 40.0 64.6 26.6 43.7 44.0 65.8
KK QK 60.3 87.6 38.5 63.4 25.4 43.0 41.4 64.7
KK KK 65.8 90.1 40.2 65.0 26.7 43.6 44.2 66.2

Table 3 presents the performance impact of various features employed in constructing Aψ during VFM graph distillation.
The VFM column represents the features utilized in the construction of AVFM, while the CLIP column represents the features
used for ACLIP. In the table, F refers to visual features derived from VFM, and Q and K represent the attention query and
key components from their respective models. Each row represents a specific combination of features from VFM and CLIP
used to construct the attention graph (e.g., QK in the VFM column indicates that AVFM is constructed as AVFM = QK).

When using visual features F from VFM, the results show moderate performance overall; however, constructing AVFM
using attention components such as Q or K instead of F resulted in better performance. This indicates that attention com-
ponents more effectively capture semantic relationships between patches, demonstrating the efficiency of using attention to
extract object-level context, which aligns with the findings of prior study [8]. In terms of attention components, QQ performs
better than QK across most datasets but is outperformed by KK. The QK configuration generally shows weaker perfor-
mance compared to both QQ and KK, highlighting the importance of modifying the last layer of self-attention in CLIP
instead of using vanilla attention settings. Overall, the best performance is achieved when KK is used for the attention graph
consistently in both VFM and CLIP, as demonstrated by the highest average mIoU of 44.2 and average pAcc of 66.2. This
suggests that the KK provides the most robust and object-centric representation for constructing attention graphs.

C.2.3. Ablation: Graph Matching Strategy

Table 4. Ablation results on different graph matching strategies.

Method
V21 PC59 C-Stf Avg.

mIoU
Avg.
pAcc

mIoU pAcc mIoU pAcc mIoU pAcc
Sequential 64.9 89.6 39.6 64.5 26.2 43.1 43.5 65.7

Similar 65.5 90.0 40.2 65.1 26.6 43.6 44.1 66.2
Complementary 65.8 90.1 40.2 65.0 26.7 43.6 44.2 66.2

In Table 4, we compare different graph matching strategies. “Sequence” refers to matching graphs head-to-head in a se-
quential manner without applying additional structural alignment techniques. “Similar” involves matching graphs that exhibit
similar structures between VFM and CLIP. Lastly, “Complementary” uses a strategy that matches graphs with contrasting
but complementary structures between VFM and CLIP to leverage diverse information. From the results, we observe that the
“Sequential” method delivers competitive performance, achieving an average mIoU of 43.5 and pAcc of 65.7. The rows for
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“Similar” and “Complementary” consider the attention graph structures from each head, matching either similar or dissimilar
ones, respectively. The “Similar” strategy improves the results, with an average mIoU of 44.1 and pAcc of 66.2. However,
the proposed “Complementary” method outperforms both matching methods, achieving the highest average mIoU of 44.2
and pAcc of 66.2. Overall, while sequential approaches are straightforward and offer reasonable performance, these results
highlight the advantages of considering in matching attention heads.

C.2.4. Ablation: Number of Eigenvalues for Low-Rank Components in VFM Graph

Table 5. Ablation results on rank selection methods for low-rank components.

Method Adaptive
V21 PC59 C-Stf Avg.

mIoU
Avg.
pAcc

mIoU pAcc mIoU pAcc mIoU pAcc
k = 3 ✗ 62.7 89.3 39.2 64.0 25.9 42.6 42.6 65.3
k = 4 ✗ 64.5 89.8 39.8 64.6 26.4 43.1 43.6 65.8

Eigengap ✓ 64.9 89.6 39.8 64.6 26.3 43.3 43.7 65.8
Energy-based ✓ 65.8 90.1 40.2 65.0 26.7 43.6 44.2 66.2

In this experiment, we compare methods for selecting the rank (number of eigenvalues) for low-rank components. Table 5
presents the results of applying several well-known methods alongside our proposed energy-based approach. Rows marked
with ✗ represent the use of a fixed rank k across the entire images in datasets, whereas rows marked with ✓ indicate searching
for the optimal rank on a per-image basis. The eigengap is computed as the index i∗ where the difference between consecutive
eigenvalues in the spectrum is maximized, typically defined as i∗ = argmax

i∈{1,2,...,n−1}
(λi − λi+1), where λi and λi+1 represent

the i-th and (i + 1)-th largest eigenvalues, respectively. This metric is commonly used to identify the point where the
eigenvalue spectrum exhibits a significant drop, which helps in determining the optimal rank for low-rank approximations or
clustering applications.

Fixed-rank methods maintain consistent ranks across all images but fail to adapt to varying data complexity within individ-
ual images. As a result, their performance is lower compared to adaptive approaches. The eigengap method, which adaptively
selects the rank by identifying a significant drop in the eigenvalue spectrum, improves performance compared to fixed-rank
strategies. However, the eigengap approach is limited by its sensitivity to small variations in the eigenvalue distribution,
which can lead to inconsistent rank selections in certain cases. Our energy-based method further enhances performance by
selecting ranks based on the cumulative energy of the eigenvalues, ensuring a more stable and data-driven approach to rank
determination. This method achieves the best overall results and consistently outperforms all other methods across individual
datasets. These results highlight the importance of adaptive rank selection strategies in capturing the intrinsic object-level
structure of graphs.

D. Implementation Details
D.1. Prompt Templates

Table 6. Examples of the prompt templates used for text embedding generation.

Examples of Prompt Templates

“a photo of my {prompt}.”
“a photo of a nice {prompt}.”

“a cropped photo of a {prompt}.”
“a photo of a large {prompt}.”

“art of the {prompt}.”

Following recent works [6, 7, 17], we employ a comprehensive set of prompt templates to enhance the diversity of text
embeddings (e.g., “a photo of {prompt}”). Specifically, given a prompt query t, it is systematically inserted into a predefined
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list of 80 diverse templates designed to capture varying linguistic contexts. Each generated sentence is processed through
the CLIP text encoder, resulting in 80 distinct text embeddings. To make these embeddings into a unified representation, we
compute their average, yielding a single, contextually rich text embedding tCLIP that corresponds to the input query t. The
examples of prompt templates are listed in Table 6.

D.2. Hyperparameters

Table 7. Hyperparameters used in CASS.

V21 PC60 C-Obj V20 PC59 C-Stf City ADE

α γ α γ α γ α γ α γ α γ α γ α γ

0.03 0.10 0.04 0.25 0.01 0.25 0.02 0.40 0.04 0.25 0.02 0.20 0.03 0.10 0.05 0.30

Here, we provide a detailed description of the hyperparameters listed in Table 7. The parameter α controls the balance
between the original text embedding and the object-specific vector, while γ adjusts the trade-off between the patch-text
similarity Ŝ and the object presence prior.

E. Application
E.1. Image Inpainting and Object Removal

Input Image

Object Mask

B
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el
in

e
C

A
SS

Image Inpainting Object Removal

Edit “Toyota car”

D
ow

ns
tre

am

Figure 1. Visualization of image inpainting and object removal using our predicted mask. For image inpainting, we use “red sports
car with red wheels” as an input prompt. Note that the mask refinement step is excluded when segmenting the object mask.

While our CASS can naturally be used for semantic segmentation directly based on user-provided prompts in real-world
scenarios (see Sec. E.2 for diverse examples), its ability to be object-level context-aware allows it to group object components
effectively. As a result, CASS produces clean object masks that can be effectively utilized in downstream tasks (e.g., image
inpainting and object removal). Fig. 1 visualizes the application of our CASS in various downstream tasks. When provided
with the object prompt Toyota car, our model generates a precise object mask, enabling tasks such as image inpainting
and object removal. For image inpainting, we utilize Stable Diffusion XL (SDXL) [13], while for object removal, we employ
LaMa [16]. The baseline model used for comparison is NACLIP [6]. Comparing the results to the baseline, it is evident
that the baseline model struggles to correctly mask all the object components, such as the rear wheels and headlights. For
example, the baseline fails to mask the rear wheel of the car, which limits the inpainting model from accurately rendering
the red wheel in the edited image. Similarly, incomplete masking of headlights results in unedited regions (e.g., headlight)
during the inpainting process. This limitation also affects object removal tasks. The baseline’s failure to mask the entire
object (i.e., Toyota car) limits object-level removal and instead focuses on specific internal components, such as side

7



mirrors or door handles. In contrast, our method successfully captures all relevant object components, producing a complete
and accurate object mask that enables the removal of the object as a whole. These results demonstrate the importance of
generating object-level context-aware masks, as they enable downstream models to perform tasks such as image inpainting
and object removal with significantly improved precision and quality.

E.2. Open-Vocabulary Semantic Segmentation in the Wild
Fig. 7 illustrates the application of CASS on real-world images, demonstrating its ability to adapt to diverse and uncontrolled
settings. This showcases the method’s robustness in handling the complexities and variations typically encountered in real-
world scenarios, without requiring additional fine-tuning or preprocessing.

F. Discussion
F.1. Limitations

ProxyCLIP Ours Ground Truth

Figure 2. Visualization of limitation of CASS.

Our CASS introduces object-level contextual knowledge into training-free OVSS, enabling the effective grouping of object
components into coherent semantic entities. By combining Energy-based Low-rank Approximation with spectral-based
graph matching, our approach narrows the gap between pixel-level predictions and object-level understanding, contributing
a significant advancement towards the primary objectives of OVSS.

However, CASS has limitations, particularly in computational efficiency. While Energy-based Low-rank Approximation
reduces costs, the eigendecomposition step remains computationally demanding, especially for high-resolution images. Ad-
ditionally, the Hungarian matching algorithm, which runs on the CPU, introduces further latency due to its lack of GPU
support. These inefficiencies hinder real-time applicability. For instance, CASS processes at 5.6 FPS on an RTX A6000
GPU, which is insufficient for real-time segmentation. Optimizing computational efficiency is essential to expanding its
practical use in time-sensitive tasks.

Moreover, as shown in Fig. 2, our emphasis on object-level context leads to stronger performance on large objects (e.g.,
building: 20.0 [10] to 34.7 mIoU) but can underperform on smaller objects, ultimately diminishing the overall mIoU improve-
ment due to the averaging across all classes. As a result, CASS yields substantial improvements on datasets with predomi-
nantly large and distinct object classes (e.g., VOC), while showing relatively modest gains on datasets rich in small object
categories (e.g., ADE, COCO). Nonetheless, CASS still secures a 7.25% relative improvement over the existing SoTA [10]
on average across 8 datasets, underscoring its meaningful contribution to advancing training-free OVSS.

F.2. Future Works
Our proposed CASS is designed to perform semantic segmentation on individual images based on user-provided arbitrary
prompts, achieving competitive performance in grouping object components into coherent entities. While effective for static
scenarios, the current approach does not account for temporal consistency, limiting its applicability to video sequences and
dynamic environments. To extend its use to real-time or sequential analysis tasks, future work will focus on incorporating
temporal information to ensure coherence across frames. This enhancement will enable the method to handle video streams
more effectively, supporting applications such as object tracking and dynamic scene understanding.

As mentioned in the limitations, the high computational time remains a challenge that must be addressed as part of our
future work. Specifically, optimizing the eigendecomposition process and the Hungarian matching algorithm used for graph
matching is crucial. These improvements will play a key role in enhancing the efficiency of our method and making real-time
inference feasible for practical applications.
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Input Image SCLIP NACLIP ProxyCLIP CASS GT

Figure 3. Additional qualitative comparison between recent state-of-the-art methods SCLIP [17], NACLIP [6], ProxyCLIP [10] and Our
CASS using PASCAL VOC dataset [5].
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Input Image SCLIP NACLIP ProxyCLIP CASS GT

Figure 4. Additional qualitative comparison between recent state-of-the-art methods SCLIP [17], NACLIP [6], ProxyCLIP [10] and Our
CASS using COCO dataset [2].
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Input Image SCLIP NACLIP ProxyCLIP CASS GT

Figure 5. Additional quantitative comparison between recent state-of-the-art methods SCLIP [17], NACLIP [6], ProxyCLIP [10] and Our
CASS using PASCAL Context [11].
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Input Image SCLIP NACLIP ProxyCLIP CASS GT

Figure 6. Additional qualitative comparison between recent state-of-the-art methods SCLIP [17], NACLIP [6], ProxyCLIP [10] and Our
CASS using ADE20K [18] (top) and Citscapes [4] (bottom).
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Figure 7. Real-world open-vocabulary semantic segmentation results of our model after applying mask refinement [1].
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