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A. Detailed Experimental Settings
A.1. Datasets
MOS Benchmark Datasets. Our experiments utilize the
MOS benchmark dataset [12], which has been used in
prior studies [14, 31, 34, 46]. The MOS benchmark in-
cludes ImageNet-1k [3] as the in-distribution (ID) dataset
with a validation set with 50,000 images. The out-
of-distribution (OoD) dataset consists of four datasets:
SUN [48], Places [50], Textures [2], and iNaturalist [42],
with no overlap with ImageNet-1k. The test OoD datasets
include 10,000 images each from iNaturalist, SUN, Places,
and 5,640 images from Textures.

OpenOOD v1.5 Benchmark Datasets. OpenOOD
v1.5 [49] includes six benchmarks: four standard OoDD
benchmarks and two full-spectrum OoDD benchmarks. For
our experiments, we utilize the standard OoDD benchmark
with ImageNet-1k, which consists of 45,000 images for
testing and 5,000 images for validation. This benchmark
dataset includes two scenarios: Near-OoD and Far-OoD
scenarios. The Near-OoD scenario includes SSB-hard [43]
(49,000 images across 980 categories) and NINCO [1]
(5,879 images), while the Far-OoD scenario contains
iNaturalist (10,000 images), Textures (5,640 images), and
OpenImage-O [45] (1,763 images).

A.2. Implementation details
Our proposed method, Cross-Modal Alignment (CMA),
was implemented using Python 3.9.18 and PyTorch
1.12.0+cu116. All experiments were conducted on 8
NVIDIA A6000 GPUs, each with 48GB of memory, run-
ning on Ubuntu 20.04.6 LTS.

We conduct experiments across zero-shot (ZS), prompt
learning (PL), single-modal fine-tuning (SMFT), and multi-
modal fine-tuning (MMFT), following the default configu-
rations of each baseline for fair comparison. For ZS, we use
the post-hoc methods MCM [31] and NegLabel [14], which
leverage text information without additional training. These
OoD scoring methods are also employed for PL and MMFT
experiments.

As in previous works [14, 31], we use the prompts “a
photo of a [label]” for MCM in the ZS setting and “The
nice [label]” for NegLabel with temperature scaling set to 1
and 0.01, respectively. NegLabel [14] highlights that word
choice in prompt engineering significantly impacts OoD
detection performance: negative prompts degrade perfor-

mance, positive prompts improve it, and neutral prompts
require careful tuning. Among these, the “The nice [label]”
template provides optimal results in NegLabel. However,
in MMFT methods such as FLYP [8], template choice does
not lead to significant accuracy variations. To explore this
further, we conduct an ablation study using three different
prompts, finding that the prompt choice does not signifi-
cantly affect OoDD performance in MMFT. Detailed results
are provided in Appendix B.3.

Unlike MCM, NegLabel requires additional hyperpa-
rameters due to its use of negative texts. Specifically, neg-
ative labels are mined from large word corpora like Word-
Net [6]. We follow the NegMining from Jiang et al. [14],
which extracts M = 10, 000 negative labels with a per-
centile η = 0.05 from WordNet. The extracted texts are
then used for OoD scoring, as described in Eq. 7. Addi-
tionally, the results in Tables 1 and 2 do not incorporate the
grouping strategy. Detailed results on the grouping strategy
are provided in Appendix B.2.

For CoOp [52] and LoCoOp [34], we also adopt the set-
tings proposed in the original papers. However, PL employs
few-shot fine-tuning with a 16-shot setting, making direct
comparisons with SMFT and MMFT potentially unfair. To
address this, we not only follow the original settings but
also evaluate with increasing shot counts, up to the full-
shot setting where all ID data are utilized, as detailed in
Appendix B.1. In the 16-shot setting, we report the aver-
aged results from three repeated experiments with seeds 0,
1, and 2 using the original codebase [34, 52]. For other shot
settings, we do not perform repeated experiments.

In SMFT, we use LP, FFT, and LP-FT [21], each of
which exclusively utilizes the visual encoder without rely-
ing on textual information. Following Goyal et al. [8], we
perform a hyperparameter sweep with learning rates {1e-4,
1e-5, 1e-6} and weight decay values {0.0, 0.1}. Models
are trained for 10 epochs, selecting the best based on in-
distribution (ID) accuracy, as OoD data is not directly avail-
able for validation in real-world OoDD settings. Through
this procedure, the learning rates are set to 1e-4 for LP and
1e-5 for FFT and LP-FT, with a weight decay of 0.0.

For MMFT, we compare FLYP [8] and m2-mix [35]
with our proposed approach, using the same hyperparam-
eter sweep as SMFT. Our method explores learning rates
{1e-4, 1e-5, 1e-6}, weight decay values {0.0, 0.1}, and
alignment strengths (i.e., λ) {1e-1, 1e-2, 1e-3}, with a batch
size of 512. Early stopping is based on the accuracy of
the ID validation set. In m2-mix, the mixup weight is con-



trolled using the λ value instead of alignment strength.
Fig. 3 presents a snippet of code to illustrate our pro-

posed method. In summary, the CLIP image and text
encoders extract corresponding embeddings, which are
projected into the same dimension and undergo L2 nor-
malization, projecting them onto a shared hyperspherical
space. For CLIP and FLYP, contrastive learning opti-
mizes cosine similarity by increasing it for matching image-
text pairs while reducing it for non-matching pairs. Our
method extends this approach by calculating CMA text
and CMA img to derive the total loss. When the align-
ment strength parameter λ is set to 0, the training process is
equivalent to FLYP.

# extract image and text embeddings
img_emb, text_emb, scale = model(images, texts)

# joint hypersphirical embeddings
img_emb /= img_emb.norm(dim=-1, keepdim=True)
text_emb /= text_emb.norm(dim=-1, keepdim=True)

# scaled cosine similarity
logits = (scale) * (img_emb @ text_emb.T)

# clip symmetric loss function
gt = torch.arange(bs)
img_loss = Cross_Entropy_Loss(logits, gt, axis=0)
text_loss = Cross_Entropy_loss(logits, gt, axis=1)

# cross-modal-alignment regularization
CMA_img = -torch.logsumexp(logits.per_img,dim=1)
CMA_text = -torch.logsumexp(logits.per_text,dim=1)

# total CMA loss
total_loss = (img_loss + args.lam * CMA_img.mean())/2

+ (text_loss + args.lam * CMA_text.mean())/2

Figure 3. Pytorch-like pseudo-code of CMA



B. Additional Ablations

B.1. PL results with various-shot settings

In Tables 1 and 2 of the main paper, we present PL re-
sults based on the default 16-shot settings from CoOp [52]
and LoCoOp [34]. To ensure a fair comparison, we ex-
tend these implementations to consider additional shot set-
tings, including full-shot, and compare them with SMFT
and MMFT, which employ full-shot configurations. Specif-
ically, we conduct experiments using 256, 512, 1024, and
full-shot settings, as shown in Tables 5, 6, and 7. All set-
tings use a batch size of 512, consistent with the SMFT and
MMFT configurations.

Our observations reveal that increasing the number of
shots generally improves both OoDD performance and ID
accuracy, suggesting that prompt learning benefits from
more training data. However, full-shot settings do not al-
ways yield better results; in some benchmarks, performance
at full-shot is even worse than ZS. Additionally, the ob-
served improvements are not sufficient to outperform other
baselines.

For CoOpNegLabel, the highest ID accuracy of 74.07% is
achieved in the 1024-shot setting, as shown in Table 7. In
contrast, the best OoDD performance is observed in the
256-shot setting on the MOS benchmark and the 512-shot
setting on the OpenOOD v1.5 benchmark. These results in-
dicate that while increasing the number of shots from 16
to full-shot provides incremental gains, determining an op-
timal setting remains difficult. Nonetheless, our approach
consistently outperforms CoOp and LoCoOp across all shot
settings.

B.2. The effect of grouping strategy

The NegMining algorithm expands textual information by
selecting words maximally distant from ID texts, thereby
reducing the risk of high similarity between ID images and
negative labels, as described in Algorithm 1. However, in-
creasing the number of negative labels raises the variance
in OoD scores, which can lead to more false positives. To
address this, NegLabel [14] has proposed a grouping strat-
egy that divides the negative labels into multiple groups to
balance the benefits of additional information with the risk
of false positives.

We report the performance of the grouping strategy pro-
posed by NegLabel at n = 100 in Table 8. Applying the
grouping strategy improves OoDD performance as shown
in the table. To highlight the inherent capabilities of CMA,
we do not apply additional performance-enhancing tech-
niques, such as the grouping strategy, in our main experi-
ments. Nevertheless, our method achieves state-of-the-art
performance without the grouping strategy and shows fur-
ther improvements when it is applied.

Algorithm 1 NegMining (proposed in NegLabel [14])
Input: Candidate labels Yc, ID labels Y , Text encoder f text

Output: Negative labels Y−

1: // Calculate text embeddings
2: for yi ∈ Y do
3: ei = f text(prompt(yi))
4: end for
5: for ỹi ∈ Yc do
6: ẽi = f text(prompt(ỹi))
7: // Measure candidate-ID label distance.
8: di = percentileη({− cos(ẽi, ek)}Kk=1)
9: end for

10: // Choose M negative labels from top-k distances.
11: Y− = topk([d1, d2, . . . , dC ],Yc,M)

B.3. The impact of prompts on OoDD performance
To evaluate the impact of prompts on performance, we con-
duct an ablation study using three prompts: “A photo of a
[label]”, “The nice [label]”, and no prompt, as shown in Ta-
ble 9. These prompts are derived from the ablation study
of NegLabel [14]. Models are trained and evaluated with
the same prompts. Our results indicate that altering the
prompt does not lead to significant changes in performance.
Specifically, in MCM, the performance difference across
prompts does not exceed 1% in terms of average AUROC
and FPR95. While positive prompts demonstrate slightly
better OoDD performance, the differences are not signif-
icant enough to affect its performance superiority. These
results show that the choice of prompt during MMFT has a
negligible impact on OoDD performance.

B.4. The impact of λ values on OoDD performance
We select the λ value based on ID accuracy, as actual OoD
data is not available for evaluation. To determine the opti-
mal value of λ, we compare different λ values {1e-1, 1e-2,
1e-3, 5e-4}, and 1e-3 yields the highest ID accuracy, which
is also aligned with the best OoDD performance, as shown
in Table 10. Notably, an increase in alignment strength
does not consistently improve ID accuracy or OoDD perfor-
mance, highlighting the need for careful tuning. In our ex-
periments, CMA demonstrates strong OoDD performance
when the λ value is optimized for ID accuracy, even with-
out access to OoD data.



Table 5. OoDD performance across different shot settings (16-, 256-, 512-, 1024-, and full-shot) for CoOp and LoCoOp on the MOS
benchmark

iNaturalist SUN Places Textures Average
Methods FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Zero-Shot
MCM 32.28 94.40 39.33 92.28 44.94 89.83 57.98 85.99 43.63 90.63
NegLabel 2.30 99.37 23.23 95.14 39.85 90.98 46.49 89.64 27.97 93.78
16-shot
CoOpMCM 26.37 94.49 35.23 92.59 43.29 89.67 41.47 90.62 36.59 91.84
CoOpNegLabel 4.95 98.90 25.76 94.59 30.07 93.33 44.35 89.59 26.28 94.10
LoCoOpMCM 23.08 95.46 33.39 93.25 40.74 90.52 40.75 91.14 34.49 92.59
LoCoOpNegLabel 3.19 99.25 46.63 90.58 55.44 87.65 46.03 89.85 37.83 91.83
256-shot
CoOpMCM 28.26 94.14 34.69 92.83 42.05 90.15 41.67 90.53 36.67 91.91
CoOpNegLabel 4.28 99.00 29.34 94.41 29.07 94.23 34.25 93.01 24.23 95.16
LoCoOpMCM 18.80 96.12 34.46 92.92 42.04 90.32 39.77 91.55 33.77 92.73
LoCoOpNegLabel 4.37 99.09 49.39 90.53 64.01 85.82 51.45 88.95 42.31 91.10
512-shot
CoOpMCM 24.78 94.80 33.63 92.89 40.61 90.46 39.45 91.17 34.62 92.33
CoOpNegLabel 3.59 99.14 34.54 93.30 30.80 93.79 31.01 93.64 24.98 94.97
LoCoOpMCM 22.00 95.50 30.06 93.80 36.27 91.37 40.89 91.38 32.30 93.02
LoCoOpNegLabel 4.85 98.93 40.15 92.29 58.99 86.76 60.78 85.40 41.19 90.84
1024-shot
CoOpMCM 22.83 95.15 33.60 92.80 40.96 90.46 39.40 91.33 34.20 92.44
CoOpNegLabel 4.54 98.93 33.76 93.65 30.19 94.26 31.73 93.51 25.05 95.09
LoCoOpMCM 22.10 95.27 32.58 93.58 38.50 91.16 39.52 91.52 33.18 92.88
LoCoOpNegLabel 3.80 99.10 41.17 91.97 56.59 87.95 56.93 87.43 39.62 91.61
full-shot
CoOpMCM 23.88 94.98 35.74 92.49 41.72 90.13 38.93 91.14 29.10 92.19
CoOpNegLabel 5.14 98.87 32.80 93.72 32.23 93.80 32.81 93.16 25.75 94.89
LoCoOpMCM 20.25 96.01 32.72 93.25 38.82 90.87 39.96 91.39 32.94 92.88
LoCoOpNegLabel 4.48 99.02 43.44 91.03 66.05 83.16 53.51 88.34 41.87 90.39



Table 6. OoDD performance across different shot settings (16-, 256-, 512-, 1024-, and full-shot) for CoOp and LoCoOp on the OpenOOD
v1.5 benchmark

SSB-hard NINCO Near-OoD iNaturalist Textures Openimage-O Far-OoD
Methods FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Zero-Shot
MCM 89.45 64.11 82.70 69.82 86.08 66.97 61.94 87.62 54.26 87.71 53.80 88.60 56.67 87.98
NegLabel 81.87 71.32 69.82 77.09 75.85 74.21 2.32 99.36 44.98 90.56 31.10 93.10 26.14 94.34
16-shot
CoOpMCM 86.10 67.72 77.24 74.59 81.67 71.16 26.31 94.50 38.38 91.92 37.64 92.08 34.11 92.83
CoOpNegLabel 68.20 78.72 57.71 84.20 62.96 81.46 4.96 98.90 42.74 90.28 23.18 95.25 23.63 94.81
LoCoOpMCM 87.38 66.23 77.04 73.46 82.21 69.84 22.98 95.48 37.89 92.27 37.44 92.09 32.77 93.28
LoCoOpNegLabel 76.03 74.42 66.51 80.96 71.27 77.69 3.70 99.16 43.87 90.59 29.29 93.65 25.62 94.47
256-shot
CoOpMCM 86.87 68.10 76.04 74.52 81.45 71.31 28.23 94.16 38.11 91.93 37.27 92.22 34.54 92.77
CoOpNegLabel 63.67 81.66 52.80 86.29 58.23 83.98 4.29 98.99 32.51 93.65 20.76 95.96 19.19 96.20
LoCoOpMCM 86.63 66.46 76.07 73.77 81.35 70.11 18.78 96.14 36.55 92.70 34.53 92.76 29.95 93.86
LoCoOpNegLabel 68.88 81.54 70.86 79.89 69.87 80.72 4.40 99.08 50.31 89.83 29.87 93.97 28.19 94.29
512-shot
CoOpMCM 85.89 68.85 76.06 74.85 80.98 71.85 24.75 94.81 35.96 92.49 35.28 92.57 32.00 93.29
CoOpNegLabel 68.48 79.54 50.01 87.31 59.25 83.43 3.60 99.14 29.28 94.22 18.90 96.34 17.26 96.57
LoCoOpMCM 86.40 66.30 75.30 73.94 80.85 70.12 21.93 95.51 37.89 92.55 34.44 92.77 31.42 93.61
LoCoOpNegLabel 67.23 81.48 70.40 78.99 68.82 80.23 4.86 98.92 59.40 86.31 30.01 93.91 31.42 93.05
1024-shot
CoOpMCM 86.04 68.76 75.94 75.58 80.99 72.17 22.78 95.17 36.11 92.56 34.69 92.71 31.19 93.48
CoOpNegLabel 68.92 79.90 50.16 87.23 59.54 83.57 4.56 98.93 30.07 94.10 19.83 96.20 18.15 96.41
LoCoOpMCM 86.37 66.53 75.78 74.48 81.07 70.51 21.94 95.28 36.55 92.55 35.59 92.46 31.36 93.43
LoCoOpNegLabel 65.79 82.29 71.85 77.62 68.82 79.95 3.84 99.09 55.83 88.11 29.45 93.84 29.71 93.68
full-shot
CoOpMCM 86.13 68.92 75.96 75.17 81.04 72.04 23.84 94.99 35.45 92.41 34.70 92.77 31.33 93.39
CoOpNegLabel 63.73 82.39 52.27 86.90 58.00 84.64 5.16 98.87 31.10 93.73 19.02 96.42 18.43 96.34
LoCoOpMCM 85.89 67.35 74.84 75.03 80.36 71.19 20.17 96.02 37.09 92.52 33.62 92.95 30.29 93.83
LoCoOpNegLabel 69.13 80.92 72.60 77.84 70.86 79.38 4.50 99.01 51.92 89.25 30.11 93.68 28.84 93.98

Table 7. ID accuracy across different shot settings (16-, 256-, 512-, 1024-, and full-shot) for CoOp and LoCoOp on ImageNet-1k

Methods Acc.
16-shot
CoOp 71.95
LoCoOp 71.72
256-shot
CoOp 72.96
LoCoOp 72.76
512-shot
CoOp 73.61
LoCoOp 73.12
1024-shot
CoOp 74.07
LoCoOp 73.28
full-shot
CoOp 73.97
LoCoOp 73.44



Table 8. The effect of the grouping strategy (n = 100) on the MOS benchmark. The symbol ⋆ represents the result with the grouping
strategy.

iNaturalist SUN Places Textures Average
Methods FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Zero-Shot (ZS)
MCM 32.28 94.40 39.33 92.28 44.94 89.83 57.98 85.99 43.63 90.63
NegLabel 2.30 99.37 23.23 95.14 39.85 90.98 46.49 89.64 27.97 93.78
NegLabel⋆ 1.55 99.58 17.96 95.82 33.53 91.97 44.34 89.86 24.35 94.31
Multi-modal Fine-tuning (MMFT)
FLYPMCM 24.86 94.35 39.81 90.58 47.92 87.16 41.19 89.34 38.44 90.36
FLYPNegLabel 3.16 99.31 23.48 94.82 37.23 90.86 41.70 89.27 26.39 93.57
FLYPNegLabel⋆ 2.41 99.45 20.38 95.40 32.64 91.66 38.49 89.83 23.48 94.08
m2-mixMCM 22.41 95.61 39.18 91.85 47.07 88.72 43.44 90.13 38.02 91.58
m2-mixNegLabel 2.39 99.43 23.03 94.86 35.55 91.21 36.65 90.68 24.40 94.05
m2-mixNegLabel⋆ 1.85 99.53 20.13 95.41 31.91 91.96 34.22 91.17 22.03 94.52
CMAMCM (Ours) 22.95 95.65 40.01 91.78 48.83 88.41 44.93 89.87 39.18 91.43
CMANegLabel (Ours) 1.65 99.62 16.84 96.36 27.65 93.11 33.58 91.64 19.93 95.13
CMANegLabel⋆ (Ours) 1.38 99.66 16.11 96.55 26.52 93.48 33.09 91.90 19.27 95.40

Table 9. Comparison with different prompt settings (e.g., positive, neutral, and no prompts) for FLYP and CMA on the MOS benchmark

iNaturalist SUN Places Textures Average
Methods FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

“< class >”
FLYPMCM 25.42 94.06 38.93 90.84 47.29 87.30 40.60 89.45 38.06 90.41
FLYPNegLabel 3.64 99.23 22.61 95.22 35.70 91.49 43.44 88.55 26.35 93.62
CMAMCM (Ours) 21.85 95.73 39.53 91.85 48.18 88.56 45.62 89.78 38.80 91.48
CMANegLabel (Ours) 2.15 99.55 18.57 96.15 28.98 93.05 34.01 91.86 20.93 95.15
“a photo of a < class >”
FLYPMCM 26.13 94.04 39.04 90.64 47.63 87.02 41.12 89.90 38.48 90.40
FLYPNegLabel 4.51 99.06 29.23 93.99 42.58 89.46 43.83 88.03 30.04 92.63
CMAMCM (Ours) 22.07 95.80 38.82 91.91 47.70 88.62 44.08 89.94 38.17 91.57
CMANegLabel (Ours) 1.92 99.55 20.72 96.03 32.28 92.50 35.27 91.07 22.55 94.79
“The nice < class >”
FLYPMCM 24.86 94.35 39.81 90.58 47.92 87.16 41.19 89.34 38.44 90.36
FLYPNegLabel 3.16 99.31 23.48 94.82 37.23 90.86 41.70 89.27 26.39 93.57
CMAMCM (Ours) 22.95 95.65 40.01 91.78 48.83 88.41 44.93 89.87 39.18 91.43
CMANegLabel (Ours) 1.65 99.62 16.84 96.36 27.65 93.11 33.58 91.64 19.93 95.13



Table 10. Comparison of different λ values for CMA on the MOS benchmark

iNaturalist SUN Places Textures Average AccMethods FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

λ = 0.1
CMAMCM (Ours) 26.20 94.96 53.54 86.56 57.73 83.45 49.73 88.00 46.80 88.24 81.12CMANegLabel (Ours) 5.61 98.91 32.57 93.75 40.97 90.44 47.30 89.68 31.61 93.19
λ = 0.01
CMAMCM (Ours) 22.70 95.86 43.95 90.64 52.63 87.33 45.80 90.09 41.27 90.98 81.96CMANegLabel (Ours) 2.89 99.41 20.24 95.81 31.11 92.78 39.15 91.30 23.35 94.83
λ = 0.001
CMAMCM (Ours) 22.95 95.65 40.01 91.78 48.83 88.41 44.93 89.87 39.18 91.43 82.64CMANegLabel (Ours) 1.65 99.62 16.84 96.36 27.65 93.11 33.58 91.64 19.93 95.13
λ = 0.0005
CMAMCM (Ours) 22.20 95.73 38.72 91.96 47.59 88.17 42.13 90.16 37.66 91.50 82.56CMANegLabel (Ours) 1.85 99.61 17.70 96.08 29.50 92.50 31.54 92.12 20.15 95.08



B.5. Additional Near-OoD experiments
To thoroughly evaluate performance in Near-OoD scenar-
ios, we conduct experiments on challenging ImageNet-1k
splits from [36]. Specifically, we adopt the P1, P2, and
P3 protocols in [36]. Each of these includes known, neg-
ative, and unknown classes. For example, in P1, the known
classes consist of 116 fine-grained dog breeds from Ima-
geNet. The unknown classes include 166 non-animal cate-
gories that are semantically distant from the known classes.
Additionally, 67 four-legged animal classes are designated
as negative classes, which are semantically closer to the
known classes but remain distinct. The negative classes
are originally intended to aid the model in distinguishing
known classes from unknown classes during training.

For our Near-OoD experiments, we treat negative
classes, along with unknown classes, as OoD since a simple
zero-shot (ZS) method using NegLabel yields near-perfect
performance on P1 and P2, making it difficult to evalu-
ate the benefits of MMFT approaches. As shown in Ta-
ble 12, ZS NegLabel achieves AUROC scores of 99.96%
and 99.42% for P1 and P2, respectively. These results in-
dicate that the unknown classes can be effectively distin-
guished using pre-trained textual information. Since the
model already separates the unknown set too well, it be-
comes challenging to evaluate the contribution of textual
information in MMFT. To address this, we construct more
challenging splits P ′

1, P ′
2, and P ′

3 by designating additional
negative datasets as OoD (i.e., negative classes + unknown
classes), as described in Table 11. We perform a hyperpa-
rameter search based on FPR95 using the validation sets of
known and negative classes. Note that negative classes are
used only as validation/test datasets, and are not included in
training.

As shown in Table 13, our method achieves the high-
est AUROC scores, maintaining robust OoDD performance
even under challenging conditions, while also achieving the
highest accuracy among all compared methods. However,
we observe that although AUROC remains higher than that
of FFTEnergy (i.e., SMFT), which does not utilize textual
information, the average FPR95 is comparable. To gain
a deeper understanding, we analyze each protocol in se-
quence.

Starting with P ′
1, we observe that FFTEnergy underper-

forms in both FPR95 and AUROC compared to methods
that utilize textual information through NegLabel. This can
be attributed to the fact that in P ′

1, the semantic distance be-
tween unknown/negative classes and known classes is suf-
ficiently large, allowing textual information such as nega-
tive concept labels to effectively distinguish them. This ob-
servation aligns with prior findings on the effectiveness of
textual information in Far-OoD scenario. Next, in P ′

2, we
observe that all NegLabel-based methods, except for our
CMANegLabel, underperform compared to FFTEnergy. This

indicates that CMA effectively reduces the modality gap,
thereby improving the utilization of textual information.
Similarly, in P ′

3, while our method performs worse than
SMFT in terms of FPR95, it achieves a higher AUROC
score.

These findings indicate that FFTEnergy, which relies
solely on visual features, can effectively distinguish be-
tween subclasses within a broader category (e.g., various
types of “Hunting Dog” in P ′

2) solely based on visual cues.
In contrast, existing NegLabel-based approaches struggle to
separate ID and OoD classes when they belong to the same
or semantically related categories, likely due to the modal-
ity gap. Our method addresses this challenge by mitigating
the modality gap, thereby improving detection performance
in Near-OoD scenarios.

ID (Known) OOD (Negative+Unknown)

All dog classes
Other 4-legged animal classes

P ′
1 29055 / 5800

Non-animal classes
17420 / 11650 (3350+8300)

Half of hunting dog classes
Half of hunting dog classes

P ′
2 7224 / 1500

Other 4-legged animal classes
7949 / 4300 (1550+2750)

P ′
3 Mix of common classes Mix of common classes

38633 / 7550 24549 / 13050 (4850+8200)

Table 11. More challenging ImageNet-1k splits. The numbers
represent the number of validation/test samples.

C. Additional Visualization
To achieve more intuitive visualization, we use PCA
with 1,000 image prototypes and class prototypes from
ImageNet-1k, along with 1,000 random OoD images (from
the MOS benchmark datasets) and negative texts. As shown
in Fig. 4, methods such as ZS and FLYP exhibit a clear
modality gap between ID image and ID text embeddings
(orange and blue points). This gap is also observed in OoD
image and text embeddings, as illustrated in Figs. 5 and 6.

Our findings indicate that eliminating this modality gap
among ID embeddings is essential for fully leveraging tex-
tual information, such as negative concept texts, as dis-
cussed in Section 5. In CMA, which addresses this modality
gap, the orange and blue points are clustered closer together,
as are the red and green points.



Table 12. ZS OoDD Performance on splits P1, P2, and P3 (ID = Known, OoD = Unknown)

P1 P2 P3 Average
Methods FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Zero-Shot (ZS)
MCM 14.27 96.96 56.07 88.89 35.11 89.64 35.15 91.83
NegLabel 0.23 99.96 3.35 99.42 29.41 90.10 11.00 96.49

Table 13. Comparison of OoDD performance on our splits P ′
1, P ′

2, and P ′
3 (ID = Known, OoD = Negative + Unknown)

P ′
1 P ′

2 P ′
3 Average

AccMethods FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Zero-Shot (ZS)
MCM 29.18 93.07 64.30 85.34 52.41 83.32 48.63 87.24

73.43
NegLabel 1.17 99.74 24.09 93.34 48.50 82.90 24.59 91.99

Prompt-Learning
CoOpMCM 24.83 93.91 63.03 84.75 52.78 83.64 46.88 87.43

75.10
CoOpNegLabel 1.20 99.73 26.75 91.65 48.82 83.72 25.59 91.70
LoCoOpMCM 22.47 94.87 62.95 84.70 52.25 83.20 45.89 87.59

74.95
LoCoOpNegLabel 0.90 99.78 25.25 91.85 60.13 79.47 28.76 90.37

Single-modal Fine-tuning (SMFT)
FFTMSP 19.18 95.45 61.44 87.04 56.46 93.78 45.69 89.98
FFTODIN 3.24 99.30 25.88 93.78 38.00 89.55 22.37 94.21 84.74
FFTEnergy 2.60 99.41 18.19 94.52 39.92 88.40 20.24 94.11

Multi-modal Fine-tuning (MMFT)
FLYPMCM 9.14 98.16 42.67 89.94 42.05 87.11 31.29 91.74

85.30
FLYPNegLabel 2.33 99.42 19.35 94.45 41.76 86.79 21.15 93.56
CMAMCM 9.21 98.16 43.02 89.95 41.26 89.43 31.16 92.51 85.55
CMANegLabel 2.29 99.42 18.07 94.76 40.97 89.71 20.44 94.63



0.4
0.2

0.0
0.2

0.4
0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(a) ZS

0.4
0.2

0.0
0.2

0.4
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(b) FLYP

0.2

0.1

0.0

0.1

0.2 0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.3

0.2

0.1

0.0

0.1

0.2

(c) m2-mix

0.25
0.20

0.15
0.10

0.05
0.00

0.05
0.10

0.15
0.20

0.2

0.1

0.0

0.1

0.2

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(d) CMA

Figure 4. Visualization of image and text embeddings using PCA on ImageNet-1k. Orange and blue points represent ID image and ID text
embeddings, respectively.
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Figure 5. Visualization of image and text embeddings using PCA on ImageNet-1k and negative texts. Orange and blue points represent ID
image and ID text embeddings, respectively, while red points denote negative text embeddings.
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Figure 6. Visualization of image and text embeddings using PCA on ImageNet-1k, MOS benchmark datasets, and negative texts. Orange
and blue points represent ID image and ID text embeddings, respectively, while green and red points denote OoD image and negative text
embeddings.
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