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In this supplementary material, we provide additional
experiment results including visualizations of merging out-
comes and the performance evaluations on few-shot learn-
ing tasks, cross-modal retrieval tasks, full datasets, and
other backbones to demonstrate the superiority of FPET
across diverse settings. We provide pseudo-code implemen-
tation and complete source code files to offer a more in-
depth understanding of our proposed method. Finally, for
clarity, we detail hyper-parameters for our experiments and
dataset configurations of the datasets we utilized.

A. Additional Analysis
A.1. Performance on other backbones
We extend the evaluation of our method to include other
backbones, such as ViT-S, ViT-L, DeiT-S and DeiT-B, to as-
sess its generalizability across different model architectures.
ViT-S and DeiT-S features a token dimension that is half
the size of ViT-B. In contrast, ViT-L employs a larger to-
ken dimension and consists of 24 transformer layers which
is twice deeper layers than ViT-B, signifying a more com-
plex model structure. DeiT-B shares a similar structure with
ViT-B but utilizes additional distillation token. In all cases,
our method is implemented at the middle layer. Our re-
sults, as detailed in Tab. 1, demonstrate that our approach
not only maintains very competitive accuracy in compari-
son to the original implementations but also achieves sig-
nificant efficiency gains, underscoring the generalizability
of our method across different backbone architectures.

A.2. Comparison with rank redundancy reduction
We compare rank redundancy reduction with token reduc-
tion by benchmarking our method against a model with a
hidden dimension of 1. As shown in Tab. 2, token reduc-
tion demonstrates superior performance in both accuracy
and efficiency. Despite a significant reduction in the hidden
dimension, the gains in efficiency are limited, while there
is a notable decrease in performance. In contrast, token re-
duction not only offers greater efficiency improvements but
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Model Method Acc (%) Time (ms) FLOPs (G) Mem (GB)

ViT-S Bi-LoRA [16] 74.9 0.67 4.7 5.0
FPET-Bi-LoRA 74.9 0.59 (-15.8%) 3.6 (-23.6%) 4.3 (-13.8%)

ViT-L LoRA [13] 76.0 8.67 61.8 19.6
FPET-LoRA 76.0 6.60 (-23.9%) 46.7 (-24.4%) 15.5 (-21.0%)

DeiT-S

LoRA[13] 70.1 1.08 4.8 5.0
FPET-LoRA 70.0 0.93(-14.2%) 3.6(-23.5%) 4.3(-13.9%)

Bi-LoRA [16] 70.2 1.08 4.8 5.0
FPET-Bi-LoRA 70.2 0.93 (-14.2%) 3.6 (-23.5%) 4.3 (-13.9%)

DeiT-B

LoRA [13] 72.9 2.62 17.6 8.4
FPET-LoRA 72.8 2.10 (-18.7%) 13.3 (-24.4%) 7.1 (-15.5%)

AdaptFormer[6] 72.7 2.73 17.7 7.7
FPET-AdaptFormer 72.6 2.15(-21.9%) 13.5(-21.9%) 6.2(-21.9%)

Table 1. Model performance on other backbones.

Method Acc (%) Time (ms) FLOPs (G) Mem (GB)

AdaptFormer (dim=8) 76.2 2.68 17.61 7.64
AdaptFormer (dim=1) 74.7 2.64 17.59 7.62
FPET-AdaptFormer 76.2 2.12 13.45 6.21

Table 2. Comparison between reducing rank redundancy and to-
ken redundancy.

also maintains accuracy. Therefore, in the context of en-
hancing efficiency, reducing token redundancy emerges as
a significantly more effective strategy than reducing rank.

A.3. Trade-offs between efficiency and accuracy
We provide numerical data corresponding to Fig 3. of the
main paper in Tab. 3. As shown in Tab. 3, our original im-
plementation, which operates at layer 6, achieves a 20.9%
reduction in inference time without compromising accuracy
compared to the original AdaptFormer [6] implementation.
Furthermore, greater efficiency gains can be achieved by
applying our module to earlier layers.

We present the same experimental results on Bi-
AdaptFormer [16] in Tab. 4 and Fig. 1. Compared to the
original Bi-AdaptFormer, our implementation at layer 6
achieves a 23.3% reduction in FLOPs. By applying our
module at layer 4, we achieve a 31.8% reduction in FLOPs
while maintaining competitive accuracy relative to state-of-
the-art PET and efficiency-focused PET methods, as shown
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Layer Method Acc (%) Time (ms) FLOPs (G)

N/A w/o merging 76.22 2.68 17.6

6

Max Pool. 75.68 2.06 13.5
Avg. Pool. 75.87 2.08 13.5
Bipartite soft matching [3] 76.03 2.12 13.5
Bipartite differentiable matching 76.22 2.12 13.5

4

Max Pool. 75.03 1.89 12.0
Avg. Pool. 75.13 1.89 12.0
Bipartite soft matching [3] 75.40 1.92 12.0
Bipartite differentiable matching 75.65 1.92 12.0

2

Max Pool. 73.41 1.67 10.5
Avg. Pool. 73.43 1.68 10.5
Bipartite soft matching [3] 73.95 1.71 10.5
Bipartite differentiable matching 74.29 1.71 10.5

1

Max Pool. 71.46 1.56 9.8
Avg. Pool. 71.45 1.57 9.8
Bipartite soft matching [3] 71.06 1.58 9.8
Bipartite differentiable matching 72.21 1.59 9.8

0

Max Pool. 68.95 1.40 9.0
Avg. Pool. 69.33 1.42 9.0
Bipartite soft matching [3] 67.39 1.44 9.0
Bipartite differentiable matching 69.09 1.45 9.0

Table 3. Trade-off between inference time and accuracy. All mod-
els are ViT-B/16 consisting of 12 transformer layers with Adapt-
Former [6]. All methods reduce 196 tokens to 98 tokens at differ-
ent layers.

in Tab. 1 of the main paper. At layer 2, we further re-
duce FLOPs by 40.6%, demonstrating the scalability and
efficiency of our approach.

Compared to the bipartite soft matching [3], our method
consistently demonstrates higher accuracy, highlighting the
more optimal matching achieved by our approach. This is
particularly evident in early layers, where the refinement of
similarity is crucial. In these layers, the accuracy of bipar-
tite soft matching [3] drops significantly, performing even
worse than basic pooling methods, further underscoring the
effectiveness of our method.

A.4. Performance on full datasets
In line with previous studies [14–16, 22, 33], our models
are trained on VTAB-1K [32] training set which comprises
subset of each original downstream dataset. We extend the
evaluation of our method to training on full datasets of CI-
FAR100 [19] and SVHN [25], which contain 50,000 and
73,257 training images, respectively.

As outlined in the main paper, our implementation uti-
lizes the ViT-B/16 as the backbone model, with the hid-
den dimension set to 8 for both AdaptFormer [6] and LoRA
[13]. As shown in Tab. 5, our method achieves competitive
accuracy relative to the original implementations underscor-
ing the robustness of FPET in full dataset scenarios.

A.5. Visualization
In Fig. 3, we visualize token merging results produced by
ToMe [3]and our token redundancy reduction module to

Layer Method Acc (%) Time (ms) FLOPs (G)

N/A w/o merging 77.01 2.77 17.7

6

Max Pool. 76.65 2.13 13.5
Avg. Pool. 76.79 2.14 13.5
Bipartite soft matching [3] 76.83 2.17 13.5
Bipartite differentiable matching 76.96 2.17 13.5

4

Max Pool. 76.06 1.92 12.0
Avg. Pool. 76.22 1.91 12.0
Bipartite soft matching [3] 76.50 1.94 12.0
Bipartite differentiable matching 76.34 1.94 12.0

2

Max Pool. 74.26 1.71 10.5
Avg. Pool. 74.66 1.71 10.5
Bipartite soft matching [3] 74.96 1.72 10.5
Bipartite differentiable matching 75.18 1.71 10.5

1

Max Pool. 72.23 1.58 9.8
Avg. Pool. 72.41 1.59 9.8
Bipartite soft matching [3] 72.02 1.60 9.8
Bipartite differentiable matching 73.00 1.60 9.8

0

Max Pool. 69.68 1.51 9.0
Avg. Pool. 70.31 1.52 9.0
Bipartite soft matching [3] 67.98 1.54 9.0
Bipartite differentiable matching 69.75 1.53 9.0

Table 4. Trade-off between inference time and accuracy. All
models are ViT-B/16 consisting of 12 transformer layers with Bi-
AdaptFormer [16]. All methods reduce 196 tokens to 98 tokens at
different layers.
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Figure 1. Trade-off between flops and accuracy. All mod-
els are ViT-B/16 consisting of 12 transformer layers with Bi-
AdaptFormer [16]. BSM refers to bipartite soft matching [3]. All
methods reduce 196 tokens to 98 tokens at different layers.

Method CIFAR-100 SVHN

AdaptFormer 92.14 97.21
FPET-AdaptFormer 92.18 97.18
LoRA 92.17 97.45
FPET-LoRA 92.29 97.48

Table 5. Accuracy on full CIFAR-100 and SVHN dataset.
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Figure 2. Performance of Few-shot learning on FGVC dataset
including FGVC-Aircraft [24], Oxford-Pets [27], Food-101 [5],
Stanford Cars [18] and Oxford-Flowers102 [26].

demonstrate the effectiveness of the proposed method. Em-
ploying the visualization techniques in [3], we trace the
trajectory of each token and project the merging results
onto the original image by averaging the colors within each
group. This method ensures that patches belonging to the
same merging group are represented by the same averaged
color and bordered by a color randomly assigned to each
group, facilitating a clear visual distinction.

Notably, whereas ToMe merges 8 tokens across all 12
layers, resulting in a total of 96 tokens to be merged, FPET
executes a one-time merge of 98 tokens, equivalent to half
of the total patch count, at the middle layer only. Despite the
larger number of remaining tokens in the last layer, the vi-
sual evidence in Fig. 3 reveals that ToMe[3] often produces
images with blurred boundaries and distortions as high-
lighted in red circles. These results indicate semantically ir-
relevant merges between the object patches and background
or other object patches. In contrast, FPET maintains sharper
edges and more authentic shapes, demonstrating more op-
timal merging outcomes to preserve crucial visual informa-
tion. This comparison underscores our module delicately
engineered for PET and the enhanced precision and effec-
tiveness of the merging process in FPET.

A.6. Accuracy Drop of Other Token Reduction
Methods

We report the accuracy drop relative to the original imple-
mentations of various token reduction methods across dif-

Method LTMP [4] ToMe [3] Ours

RepAdapter -0.32 -0.33 -0.05
LoRA [13] -0.32 -0.32 -0.12
AdaptFormer [6] -0.58 -0.34 0.00
Bi-LoRA [16] -0.34 -0.34 -0.17
Bi-AdaptFormer [16] -0.38 -0.27 -0.05

Table 6. Accuracy drop on other token reduction methods. All
models are ViT-B/16 consist of 12 transformer layers with respec-
tive PET method. Each model starts with 197 tokens. LTMP re-
duces a variable number of tokens, while ToMe merges 8 tokens
at each of the 12 layers.

ferent PET methods. As shown in Tab. 6, our method con-
sistently achieves smaller accuracy drops compared to ex-
isting approaches.

B. Performance on Other Tasks
B.1. Performance on Few-shot learning
To assess performance of FPET in low-data scenarios, we
conduct experiments using the FGVC dataset. Follow-
ing the setting in [16], we utilize five datasets, FGVC-
Aircraft [24], Oxford-Pets [27], Food-101 [5], Stanford
Cars [18], and Oxford-Flowers102 [26]. Our experiments
span 1, 2, 4, 8, and 16-shot settings.

We implement FPET on Bi-AdaptFormer[16] and com-
pare our Bi-AdaptFormer-FPET with several state-of-the-
art approaches, including LoRA[13], VPT[14], Adapter-
P[28], AdaptFormer[6], NOAH[33], FacT-TT[15], and Bi-
AdaptFormer[16]. As in [16], we configure the hidden
dimension as 8 for AdaptFormer [6], LoRA [13], and
Adapter-P[28], and as 32 for Bi-AdaptFormer [16] and Bi-
AdaptFormer-FPET. The prompt length for VPT is set to 8,
while the rank for FacT-TT[15] is determined to be 16. For
NOAH[33], we adopt the best configuration as suggested in
their paper.

As depicted in Fig. 2, Bi-AdaptFormer [16] emerges as
the top performer regarding accuracy. Our approach, Bi-
AdaptFormer-FPET, demonstrates competitive accuracy in
comparison, thereby underscoring the robustness of FPET
in scenarios characterized by limited data availability.

B.2. Performance on Cross-modal Retrieval
We present the cross-modal retrieval performance evaluated
on the Flickr30K dataset [29], to further demonstrate the
scalability of our method on vision-language tasks. Specif-
ically, we employ the pretrained BLIP-base [21] as our
vision-language backbone and apply the proposed FPET to
the vision model. As most of the latency arises from the
vision model, applying our method to only the pre-trained
vision model sufficiently yields significant efficiency im-
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(b) ToMe [3]
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Figure 3. Token merging visualization. We visualize input patches associated with each merged token at the end of networks, following
the methodology provided by [3]. Patches belonging to the same merging group are represented by the same averaged color and bordered
by a color randomly assigned to each group. Blurred boundaries and distortions indicating semantically irrelevant merging are highlighted
in red circles. We employ ViT-B/16 as the backbone and Bi-AdaptFormer as the PET method.

provements. As a baseline, we compare the results with
UniAdapter [23] that shares the same spirit of our method.
As shown in Tab. 7, we achieve a 28.44% reduction in train-
ing time and a 22.62% reduction in GPU memory usage,
demonstrating the practicality of our approach in resource-
constrained environments.

C. Pseudo code
To succinctly present the implementation of our token re-
dundancy reduction module, we provide its pseudo code
representation in Fig. 4.

D. Hyper-parameters
We provide the hyper-parameters for our experiments in
Appendix D.

E. Datasets
We provide the statistics of datasets used for our experi-
ments in Tab. 9.



Method
I2T Retrieval T2I Retrieval Efficiency

R@1 R@5 R@10 R@1 R@5 R@10 Training time (hr/epoch) Mem (GB)

UniAdapter [23] 94.2 99.5 99.7 83.6 96.6 98.2 1.09 44.96
FPET-UniAdapter 94.1 99.4 99.9 83.0 96.0 98.0 0.78(-28.44%) 34.79(-22.62%)

Table 7. Performance on cross-modal retrieval evaluated on Flickr30K [29]. We report R@1, 5, and 10 for image-to-text (I2T) and text-to-
image (T2I) retrieval, and efficiency in terms of training time and memory.

import torch

# bipartite differentiable matching
def bdm(self, tokens, key):

# halt propagation of gradients to the backbone
key = key.detach()

# key refinement
key_refined = key + self.refinement(key)

# split tokens
k_a, k_b = checkerboard_split(key_refined)
x_a, x_b = checkerboard_split(tokens)

# refined similarity matrix
scores = k_a @ k_b.transpose(-1, -2)

# exclude cls token
scores[..., :, 0] = -math.inf

# average of the top-1 and top-2 values
v, idx = torch.topk(scores, 2, dim=-1)
mean12 = v.mean(dim=-1, keepdim=True)

# generate the soft matching matrix
soft_matrix = torch.sigmoid(scores - mean12)

# generate the hard matching matrix
hard_matrix = (soft_mask > 0.5).float()

# generate the matching matrix
matching_matrix = soft_matrix + (hard_matrix - soft_matrix).detach()

# merging tokens
x_merged_sum = x_b + torch.einsum(’bik, bij->bkj’, matching_matrix, x_a)
self.size = self.size_update(self.size, matching_matrix)
x_merged = self.average(x_merged_sum, self.size)

return x_merged

Figure 4. Implementation our proposed bipartite differentiable matching.

optimizer batch size learning rate weight decay # epochs lr decay # warm-up epochs

AdamW 64 1e-3 1e-4 100 cosine 10

Table 8. Hyper-parameters for our experiments.



Dataset # Classes Train Val Test

VTAB-1K [32]

Natural

CIFAR100 [19] 100

800/1,000 200

10,000
Caltech101 [9] 102 6,084
DTD [8] 47 1,880
Oxford-Flowers102 [26] 102 6,149
Oxford-Pets [27] 37 3,669
SVHN [25] 10 26,032
Sun397 [31] 397 21,750

Specialized

Patch Camelyon [30] 2

800/1,000 200

32,768
EuroSAT [11] 10 5,400
Resisc45 [7] 45 6,300
Retinopathy [1] 5 42,670

Structured

Clever/count [17] 8

800/1,000 200

15,000
Clever/distance [17] 6 15,000
DMLab [2] 6 22,735
KITTI-Dist [10] 4 711
dSperites/location [12] 16 73,728
dSperites/orientation [12] 16 73,728
SmallNORB/azimuth [20] 18 12,150
SmallNORB/elevation [20] 18 12,150

Few-shot learning

Food-101 [5] 101

1/2/4/8/16 per class

20,200 30,300
Stanford Cars[18] 196 1,635 8,041
Oxford-Flowers102[26] 102 1,633 2,463
FGVC-Aircraft[24] 100 3,333 3,333
Oxford-Pets[27] 37 736 3,699

Full datasets

CIFAR100[19] 100 60,000 - 10,000
SVHN[25] 10 73,257 - 26,032

Table 9. Statistics of datasets.
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