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A. Details of M-BEIR Dataset

The M-BEIR dataset [12] combines 10 datasets to support
multimodal retrieval tasks, covering diverse domains such
as image-caption retrieval, product search, news, and com-
plex multimodal queries. As summarized in Table 1, it en-
compasses a total of 5.6M candidates. It supports eight dis-
tinct retrieval tasks, including retrieving images from text,
text from images, and matching multimodal queries with
corresponding multimodal responses. The dataset spans
queries with varying levels of complexity, covering multiple
domains such as fashion, news, and general-purpose data.
Each query instance consists of a query ¢, a set of related
positive candidates ¢T, and unrelated negative candidates
¢~ . To clarify the user’s intention, each query is paired with
an additional intent description. All queries include at least
one positive candidate while including negative candidates
is optional.
VisualNews. The VisualNews dataset [8] was curated by
randomly sampling 200K, 40K, and 40K image-caption
pairs for training, validation, and testing, respectively.
Tasks include retrieving captions (q; — ¢;) for a given im-
age and retrieving images (¢; — ¢;) for a given caption.
The initial number of candidates of 2.5M entries was re-
duced to 1M in the M-BEIR dataset, consisting of 500K
text and 500K image candidates.

Fashion200K. The Fashion200K dataset [4], comprising
200K images and 60K descriptions, was curated by select-
ing 30K image-description pairs for training. Tasks include
retrieving product descriptions (g; — ¢;) for a given im-
age and retrieving images (q¢; — ¢;) for a given product
description. The number of candidates is 260K.

COCO. Using the Karpathy split [7], COCO data was con-
verted to support tasks such as retrieving captions (q; — ¢¢)
from images and retrieving images (q; — ¢;) from cap-
tions. The dataset includes 113K training instances for
image-to-caption retrieval, which was trimmed to 100K in
the M-BEIR dataset for efficiency. The number of candi-
dates for testing includes 25K text entries and 5K images,
the same as the original test set of COCO.
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WebQA. The WebQA dataset [1] links textual questions
to images and their corresponding textual answers. Tasks
include retrieving answers (¢; — c¢;) based on questions
and matching queries (g; — (¢4, ¢;)) with both images and
textual explanations. The number of candidates comprises
400K image-text pairs and 540K text-only candidates.
EDIS. The EDIS dataset [9] connects captions to image-
headline pairs. Tasks involve matching textual queries
(¢ — (ci,ct)) with multimodal pairs consisting of im-
ages and their associated text. The number of candidates
includes 1M image-headline pairs, and the training set con-
sists of 26K instances.

NIGHTS. The NIGHTS dataset [3] pairs reference images
with target images. The task focuses on retrieving images
(¢; — c¢;) based on a reference image. The dataset contains
16K, 2K, and 2K instances for training, validation, and test-
ing, with a number of candidates of 40K images.
FashionIQ. FashionlQ [13] connects reference images and
their textual descriptions to target images. Tasks include re-
trieving target images (g; — ¢;) based on reference images
and associated descriptions. The dataset includes all images
as the number of candidates, with 1.7K instances reserved
for validation.

CIRR. CIRR [10] matches reference images and textual
modifications to target images. The task involves retriev-
ing target images ((g;,q:) — c¢;) that align with both the
reference image and the specified textual modification. The
number of candidates comprises all images, with validation
and test sets derived from the dataset splits.

OVEN. The OVEN dataset [5] pairs images with text ques-
tions and their corresponding multimodal answers. Tasks
include retrieving textual descriptions ((q;,qt) — ¢)
for a given query and matching multimodal responses
((giyqt) — (ciyct)). The dataset originally contained 6M
candidates, which were reduced to a 1M number of candi-
dates in the M-BEIR dataset, and training data was trimmed
to 120K instances.

InfoSeek. InfoSeek [2] uses queries consisting of im-
ages and related questions paired with textual answers seg-
mented into snippets. Tasks include retrieving text snippets



Task Dataset Domain # Query # Rel./Query # Candid.
(query — candidate) Train Val Test Train Val Test
VisualNews [8] News 99K 20K 20K 1.0 1.0 1.0 542K
1.gt = ¢ MSCOCO [7] Misc. 100K 24.8K 24.8K 1.0 1.0 1.0 5K
Fashion200K [4] Fashion 15K 1.7K 1.7K 33 3.1 2.8 201K
2.qr = cy WebQA [1] Wiki 16K 1.7K 2.4K 2.0 2.0 2.0 544K
3 = (ci,ct) EDIS [9] News 26K 3.2K 3.2K 2.6 2.6 2.6 M
-4 i Ct WebQA [1] Wiki 17K 1.7K 2.5K 1.4 1.4 1.4 403K
VisualNews [8] News 100K 20K 20K 1.0 1.0 1.0 537K
4.q; = ¢t MSCOCO [7] Misc. 113K 5K 5K 5.0 5.0 5.0 25K
Fashion200K [4] Fashion 15K 4.8K 4.8K 1.0 1.0 1.0 61K
5.q9; = ¢ NIGHTS [3] Misc. 16K 2K 2K 1.0 1.0 1.0 40K
6. (4 ) = ¢ OVEN [5] Wiki 150K 50K 50K 8.5 10.0 9.9 676K
- \4i> Gt t InfoSeek [2] Wiki 141K 11K 11K 6.8 6.7 6.5 611K
7. (a ) = e FashionIQ [13] Fashion 16K 2K 6K 1.0 1.0 1.0 74K
- \4i> gt Ci CIRR [10] Misc. 26K 2K 4K 1.0 1.0 1.0 21K
8. (s ) = (e ) OVEN [5] Wiki 157K 147K 14.7K 17.8 17.5 17.7 335K
g g Gy 1 InfoSeek [2] Wiki 143K 17.6K 17.6K 9.1 75 75 481K
M-BEIR [12] 4 domains 1.1M 182K 190K 6.5 59 5.7 5.6M

Table 1. Summary of statistics of M-BEIR. Each row describes a task-specific retrieval setup, including the dataset, domain, the number of
queries across Train/Validation/Test splits (# Query), the average number of relevant labels per query (# Rel./Query), and the total number

of candidates (# Candid.).

((gi,qt) — ¢¢) and matching multimodal pairs ((g;, g¢) —
(¢iyct)) with relevant queries. The processed dataset in-
cludes 140K instances each for text and multimodal re-
trieval tasks, with the number of candidates reduced to 1M
in the M-BEIR dataset.

B. Further Analysis
B.1. Storage Efficiency Comparison

Efficient storage utilization is crucial for large-scale re-
trieval systems. Table 2 compares the per-data storage re-
quirements of CLIP and GENIUS, highlighting the signifi-
cant advantage of quantized representations.

CLIP, which operates on a 768-dimensional floating-
point embedding, requires approximately 3 KB per data
point when stored in 32-bit precision. This can lead to
substantial storage costs, particularly in large-scale retrieval
scenarios. In contrast, GENIUS leverages a compact quan-
tization scheme, encoding each data point using a 2-bit code
(for modality separation) and eight 12-bit codes selected
from a 2'2-sized codebook. This results in a total storage
requirement of only 2 + (8 x 12) = 98 bits, equivalent to
12.25 bytes per data point, which is over a 99% reduction
compared to CLIP. For example, indexing one million data
points would require around 3 GB with CLIP, whereas GE-
NIUS would require only 12 MB. This drastic reduction in
storage overhead makes GENIUS highly scalable and cost-
efficient for deployment in real-world retrieval applications,
especially those handling billions of data points.

B.2. Training Efficiency

GENIUS offers high training efficiency. When training on
1.1 million samples using 4 x RTX3090 GPUs, the CLIP en-
coder requires 91 hours. In comparison, GENIUS intro-
duces an additional 0.4 hours for quantization and 2 hours
for decoder training. As a result, on a per-sample basis,
GENIUS is approximately 2.8 times more efficient than
GRACE, which, according to reports, trains on 0.1 million
samples in 24 hours for the MS-COCO dataset.

C. Additional Experiments
C.1. Impact of Contrastive Loss in Qunatization

As shown in Table 3 of the main paper, L. plays a cru-
cial role, and its removal from the training of quantita-
tion (Eq. 8) leads to near-zero performance. To analyze
how contrastive learning affects the embedding space, we
conduct a UMAP visualization of the quantized feature 2
before and after applying contrastive learning £ (Eq. 3).
Note that the quantized feature 2 is the reconstructed fea-
ture using code embeddings derived from discrete IDs.

Fig. 1 illustrates that even though residual quantization
loss (Eq. 7) is applied, removing contrastive learning re-
sults in misalignment between query and target features and
causes target features to collapse. This degradation in rep-
resentation leads to discrete IDs that fail to capture the rela-
tions between queries and targets effectively, making it dif-
ficult for the decoder to learn it. Furthermore, an excessive
number of targets become mapped to a single ID, rendering
the retrieval process ineffective and generating semantically



Model Representation Format

Storage Cost per Data

CLIP [11]
GENIUS

768-dim floating-point vector (32-bit)

Quantized codes: 1 modality code (2-bit) + 8 semantic codes (12-bit each)

768 x 32 = 24,576 bits = 3,072 bytes ~ 3 KB
2+ (8 x 12) = 98 bits & 12.25 bytes (~ 0.012 KB)

Table 2. Comparison of storage efficiency between CLIP and GENIUS. GENIUS achieves a more than 99% reduction in storage require-

ments, significantly enhancing scalability for large-scale retrieval tasks.

Query @ Candidates
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Figure 1. UMAP visualization of the quantized feature z before
and after contrastive learning L of Eq. 3

inconsistent IDs.

In contrast, when contrastive loss is applied in Eq. 8,
query-target alignment is preserved despite quantization.
This ensures that the semantic information is well-
represented within the discrete IDs. As a result, when
training the decoder to map queries to targets, it can effec-
tively capture the underlying relations, allowing it to gener-
ate meaningful discrete target IDs from queries.

C.2. Impact of Modality Encoding

We analyze the impact of modality encoding by compar-
ing different quantization strategies in Table 3: modality-
decoupled quantization, classifier-based modality encoding,
and residual quantization without a modality code.

Modality-decoupled quantization achieves the best per-
formance among the three approaches. While classifier-
based encoding successfully differentiates modalities, it
does not integrate modality information within the quan-
tization process. As a result, modality and semantic infor-
mation are mixed within the discrete codes, limiting their
representational capacity. In contrast, modality-decoupled
quantization explicitly separates modality information by
assigning the first code to modality while using the remain-
ing codes for semantics, leading to a more structured and
expressive representation.

The baseline without modality encoding, which does
not explicitly separate modalities, further demonstrates that
failing to encode modality weakens retrieval performance.
These findings emphasize that modality-decoupled quan-
tization provides a unified approach for handling multiple
modalities in generative retrieval, offering a more effective
discrete ID representation.

| coco WebQA  CIRR
Method | T2 | RT | T2T |T20T)| (LT)2A
Modality-decoupled quantization 554 82.7 28.3 47.1 20.5
Classifier-based modality encoding | 48.9 79.2 25.7 37.5 20.3
RQ w/o modality-code 202 | 732 | 259 | 343 18.3

Table 3. Ablation study on modality encoding approach (universal
retrieval, R@5).

C.3. Impact of Beam Search

We conduct an ablation study to examine the impact of
beam size on retrieval performance and efficiency across
various tasks. As shown in Table 4, increasing the beam
size significantly improves Recall@5. For instance, on
the COCO dataset for text-to-image retrieval, Recall@5 in-
creases from 24.2% at a beam size of 1 to 68.2% at a
beam size of 50. Similar trends are observed for image-
to-text retrieval on COCO and image-to-image retrieval on
CIRR. The improvement is even more pronounced on the
WebQA dataset, which contains knowledge-intensive data
in Wikipedia based on long sentence queries. Recall@5 for
text-to-text retrieval increases from 5.1% at a beam size of
1 to 32.8% at a beam size of 50. This substantial gain is
attributed to the expanded search space provided by larger
beam sizes, allowing the model to handle better the com-
plexity and richness of the queries in WebQA.

However, larger beam sizes increase the computational
load, resulting in higher latency. Based on our measure-
ments of the text-to-image retrieval task, retrieval speed de-
creases from 19.6 queries per second at a beam size of 30 to
11.9 queries per second at a beam size of 50. This trade-off
between performance and efficiency is a fundamental con-
sideration when deploying generative models using beam
search. Selecting an appropriate beam size requires bal-
ancing the need for higher recall against the constraints of
computational resources and application-specific latency re-
quirements.

C.4. Impact of Decoder Size

We analyze the effect of the decoder size on retrieval per-
formance. Table 5 presents the results using TS decoders of
varying sizes: TS-small (30M parameters), T5-base (110M
parameters), and T5-large (400M parameters). Increasing
the decoder size generally enhances performance on tasks
like COCO and WebQA. On COCO text-to-image retrieval,



| CoCco WebQA CIRR
Beam Size | T2 2T T™T | T2 amar
1 242 41.6 5.1 104 49
5 55.6 79.1 159 32.3 18.0
10 62.8 82.8 224 40.0 20.4
20 66.5 83.7 28.3 45.1 21.1
30 65.3 83.4 28.8 474 21.0
50 68.2 83.3 32.8 50.0 21.0

Table 4. Ablation over beam size (task-specific information re-
trieval, R@5). The default setting of our method is highlighted in
grey box .

| | coco WebQA CIRR
Decoder | #Params | T2 | 12T | T2 | T2 | a2
T5-small 30M 65.3 83.4 28.8 474 21.0
T5-base 110M 67.9 83.5 31.6 48.0 18.3
T5-large 400M 67.2 83.2 324 50.4 7.1

Table 5. Ablation over decoder size (task-specific information re-
trieval, R@5). The default setting of our method is highlighted in
grey box .

| CcoCco WebQA CIRR
Kx M | 11 | T | T2r | T20) | ama
4096 x 9 65.3 83.4 28.8 47.4 21.0
8192x 17 59.5 81.8 30.6 44.8 26.5
4096 9 (Shared) 18.6 19.3 0.2 1.7 33

Table 6. Ablation over codebook size K (except for the first level)
and code level M (task-specific information retrieval, R@5). The
default codebook size and level are underlined. In the shared con-
figuration, codebooks are shared across all levels except the first.
The default setting of our method is highlighted in grey box .

Recall@5 improves from 65.3% with T5-small to 67.9%
with T5-base. On WebQA, performance increases consis-
tently with decoder size, reaching 32.4% Recall@5 with
T5-large, which is beneficial for handling complex sen-
tences in WebQA. However, on the CIRR dataset, which
involves complex relational reasoning in image-to-image
retrieval, performance declines slightly with T5-base and
drops sharply to 7.1% with T5-large. This suggests that
larger models may overfit or struggle with optimization on
certain tasks, especially those that do not benefit from in-
creased model capacity. Therefore, we adopt T5-small as
the default decoder for its effective trade-off between re-
trieval performance and computational efficiency.

C.5. Further Analysis of Codebook Configuration

We further investigate the impact of codebook configu-
rations, including codebook size (K), code levels (M)
and shared codebook usage across levels in our modality-
decoupled semantic quantization. Table 6 shows the results
for different configurations. Increasing the codebook size
and the number of code levels to X = 8192, M = 17

Method Training Data R@1 R@5 R@10

Flickr30K

GRACE [6] (Numeric ID)
GRACE [6] (String ID)
GRACE [6] (Semantic ID)
GRACE [6] (Structured ID)

Flickr30K 225 289 294
Flickr30K 305 39.0 404
Flickr30K 229 349 374
Flickr30K 374 595 66.2

IRGen [14] Flickr30K 490 689 725
GENIUS M-BEIR 51.51 7461 80.37
GENIUS® M-BEIR 63.77 8047 83.2f
GENIUS Flickr30K 60.6 840 90.5
GENIUS® Flickr30K 741 920 94.8
COCO
GRACE [6] (Numeric ID) COCO 003 0.14 028
GRACE [6] (String ID) COCO 0.12 037 088
GRACE [6] (Semantic ID) COCO 133 304 359
GRACE [6] (Structured ID) COCO 167 392 503
IRGen [14] COCO 206 507 563
GENIUS M-BEIR 400 655 768
GENIUS® M-BEIR 426 613 789
GENIUS COCO 412 6718 718
GENIUS® COCO 461 740 827

Table 7. Comparison of generative retrieval methods on text-
to-image retrieval benchmarks. Results are reported as Re-
call@k (%). 1 indicates zero-shot performance, highlighting the
ability of the model to generalize without task-specific fine-tuning.

does not necessarily improve performance. For instance,
on COCO text-to-image retrieval, Recall @5 decreases from
65.3% to 59.5%. However, on CIRR, this configuration
leads to a significant performance improvement, highlight-
ing the varying impact of codebook size depending on task
complexity and modality. Overly large and fine-grained
codebook configurations, while occasionally beneficial, in-
crease the complexity of training the decoder model.

When using a shared codebook, Recall@5 on COCO
drops drastically to 18.6%. Similar declines are observed
across other tasks, indicating that level-specific codebooks
are crucial for capturing the unique characteristics of dif-
ferent semantics. These findings highlight the importance
of carefully configuring the codebook to ensure effective
quantization and retrieval performance.

D. Additional Quantitative Results

We present performance evaluations for additional settings
not covered in the main paper, including variations in beam
size and comparisons with a broader range of baselines.

D.1. Standard Generative Retrieval Benchmark

We evaluate GENIUS against prior generative retrieval
methods, including GRACE and IRGen, on standard text-
to-image benchmarks such as Flickr30K and COCO, as
summarized in Table 7. Unlike GRACE and IRGen, which
are specifically designed for text-to-image tasks, GENIUS



is originally trained on the M-BEIR benchmark in a multi-
task setting, supporting diverse retrieval scenarios while
also being capable of task-specific training. Note that
Flickr30K is not included in the M-BEIR dataset.

On Flickr30K, GENIUS trained with M-BEIR achieves
an impressive zero-shot Recall@5 of 74.1%, surpassing
GRACE by over 15 percentage points, despite having never
seen the dataset during training. When fine-tuned exclu-
sively on Flickr30K and combined with re-ranking, GE-
NIUS further improves its performance to a Recall@5 of
92.0%, setting a new state-of-the-art for generative retrieval
on this benchmark. On COCO, GENIUS trained with M-
BEIR achieves a Recall@5 of 65.5%, significantly out-
performing GRACE (39.2%) and IRGen (50.7%). When
trained solely on COCO, GENIUS improves further to a Re-
call@5 of 74.0%. These results highlight the generalization
ability of GENIUS to unseen datasets within a multi-task
learning framework. Although M-BEIR includes domains
similar to Flickr30K (e.g., COCO), GENIUS achieves zero-
shot performance that surpasses models specifically trained
on the same domain. Furthermore, GENIUS excels in task-
specific scenarios, achieving superior performance when
trained on individual datasets and achieving state-of-the-art
results.

D.2. Dataset-Specific Retrieval

Table 8 summarizes the performance of GENIUS across
various retrieval tasks, demonstrating its ability to outper-
form prior generative methods and achieve results close to
state-of-the-art embedding-based baselines in specific tasks.
For text-to-image retrieval on COCO, GENIUS achieves a
Recall@5 of 65.5% with a beam size of 30, significantly
surpassing IRGen at 50.7%. With embedding-based re-
ranking, performance improves to 78.0%, narrowing the
gap with CLIP-SF, which achieves 81.7%. In image-to-
text retrieval on COCO, GENIUS achieves a Recall@5 of
91.1% with re-ranking and a beam size of 50, nearly match-
ing the 92.3% of CLIP-SF.

For relational reasoning tasks in CIRR, GENIUS
achieves a Recall@5 of 35.5% with a beam size of 30. In-
creasing the beam size to 50 and incorporating re-ranking
raises performance to 39.5%, demonstrating its strength in
addressing relational queries. On WebQA, which features
knowledge-intensive and long-form queries, embedding-
based re-ranking boosts Recall@5 for text-to-text retrieval
from 36.3% to 44.6%, effectively leveraging additional
search space to handle semantically complex data. GE-
NIUS already shows superior performance compared to
prior generative methods with beam search alone. More-
over, by combining larger beam sizes with embedding-
based re-ranking, GENIUS often achieves performance lev-
els that are competitive with embedding-based state-of-the-
art methods.

D.3. Universal Retrieval

The universal retrieval performance of GENIUS demon-
strates its ability to handle diverse tasks effectively, as
shown in Table 9. Increasing the beam size alone does
not always result in significant performance improvements.
However, embedding-based re-ranking plays a crucial role
in refining candidate sets and enhancing retrieval perfor-
mance, often enabling GENIUS to approach state-of-the-art
performance.

For image-to-text retrieval on MSCOCO, Recall@5 im-
proves from 82.7% with beam search alone to 90.6% with
re-ranking at a beam size of 50, narrowing the gap with
CLIP-SF (92.3%). This highlights the strength of re-
ranking in prioritizing relevant candidates that may not rank
highly within the initial beam output. Similarly, on the
OVEN dataset for image and text pair-to-text retrieval, Re-
call@5 increases from 34.4% to 38.0% with re-ranking at
a larger beam size, effectively closing the gap with CLIP-
SF (39.2%). On NIGHTS, which involves image-to-image
retrieval, re-ranking produces a substantial improvement,
with Recall@5 jumping from 8.4% to 30.2% at the largest
beam size. These results indicate that while GENIUS gen-
erates strong candidates through beam search, embedding-
based re-ranking is essential to achieve competitive perfor-
mance, especially at larger beam sizes where the expanded
search space requires further refinement to prioritize rele-
vance.

E. More Visualizations of Quantization

To illustrate how our modality-decoupled semantic quanti-
zation operates, we provide further visualizations demon-
strating its dual properties of modality separation and
coarse-to-fine semantic refinement across subsequent lev-
els. These examples highlight the ability of GENIUS to
handle multimodal data through structured code, capturing
progressively distinct semantic details.

At the first level, codes represent modality distinctions:
0 for images, 1 for text, and 2 for image-text pairs. This
clear separation ensures that the retrieval system processes
each modality appropriately, which forms the foundation
for multimodal data handling.

The second level encodes broad semantic concepts, cap-
turing primary objects or key scenes shared across multi-
modal data. As shown in Fig. 2, examples include 1782
(i.e., a cat), grouping examples featuring cats in various
contexts, such as lying on tables, eating bananas, or curling
on skateboards. Other examples include 1534 (i.e., teddy
bears), highlighting scenes like picnics or playful activities,
and 3260 (i.e., flying a kite), which captures shared actions
across different settings. Similarly, 1640 (i.e., hotel room)
clusters scenes with shared elements like beds and lamps.
These groupings extend naturally to other domains, cate-



Ccoco VisualNews Fashion200K Nights EDIS

Fine-tuning

Ttol ItoT Ttol ItoT Ttol [toT Itol T to (I,T)
Embedding-based Retrieval
CLIP-SF[12] Sinele Task 81.7 89.8 435 4.7 10.7 12.0 33.5 58.8
BLIP-FF [12] gle fas 713 86.0 20.0 224 17.1 15.6 304 382
CLIP-SF[12] Unified Instruction 811 92.3 426 43.1 18.0 18.3 32.0 59.4
BLIP-FF [12] et 67.5 89.9 234 22.8 26.1 28.9 33.0 50.9
Generative Retrieval

GRACE [6] . - 39.5 - - - - - - -
IRGen [14] Single Task 50.7 - - - - - - -
GENIUS (B = 30) 65.5 83.4 17.5 17.5 13.6 17.0 8.4 35.6
GENIUS™ (B =30) [/ o 0 67.3 89.7 233 24.0 15.2 18.9 29.0 414
GENIUS (B =50) - rhedinstruction g 832 18.5 18.7 137 12.8 8.2 37.0
GENIUS® (B = 50) 78.0 91.1 274 284 162 16.3 30.2 443

. . WebQA OVEN InfoSeek FashionlQ CIRR

Fine-tuning
TtoT TtoLD) (IDtoT D@D CDtT D@D LT)tol (LT)to I
Embedding-based Retrieval
CLIP-SF[12] Sinele Task 81.7 76.3 454 66.2 235 474 25.9 52.0
BLIP-FF [12] ge fas 67.5 67.8 33.8 49.9 18.5 323 3.0 13.9
CLIP-SF [12] Unified Instruct 84.7 78.7 455 67.6 239 48.9 244 44.6
BLIP-FF [12] e Instruction ¢4 g 79.8 41.0 55.8 24 33.0 29.2 52.2
Generative Retrieval

GENIUS (B = 30) 28.8 474 349 34.6 12.4 15.1 12.8 21.0
GENIUS™ (B = 30) Unified Instruct 363 54.9 36.6 35.0 18.0 26.7 17.5 355
GENIUS (B =50) —|redimnstuction 355 49.7 36.6 36.4 112 14.6 132 20.7
GENIUS™ (B = 50) 44.6 60.6 419 52.5 20.7 30.1 19.3 39,5

Table 8. Task-specific Information Retrieval. Recall@5 results of single-task and unified instruction fine-tuning methods on the M-BEIR
dataset, except Fashion200K and FashionIQ, where Recall@10 is reported. B represents the beam size, and R indicates re-ranking based
on embedding vectors within the predicted candidate set. I and T denote image and text modalities, respectively, and (I,T) indicates the
retrieval direction for image-to-text or text-to-image tasks.

Embedding-based Retrieval Generative Retrieval
Task Dataset R R
GENIUS  GENIUS GENIUS  GENIUS

CLIPgr CLIPgr BLIPg; BLIPgr (B=30) (B=30) (B=50) (5= 50)
VisualNews 42.6 28.8 20.9 23.0 18.5 23.9 18.5 27.3
Lg — ¢ MSCOCO 719 747 71.6 75.6 554 64.8 55.1 68.0
Fashion200K 17.8 15.5 243 25.4 13.6 14.7 13.7 16.2
2. qr — ¢ WebQA 84.7 78.4 78.9 79.5 283 36.5 31.1 42.9
3 g0 (enrer) EDIS 59.4 50.0 472 50.3 354 41.4 36.6 4.1
- qe i Ct WebQA 78.8 75.3 76.8 79.7 47.1 55.8 49.0 59.7
VisualNews 42.8 28.6 19.4 21.1 17.3 232 18.4 26.8
4. q; — ct MSCOCO 92.3 89.0 88.2 88.8 82.7 89.4 82.7 90.6
Fashion200K 17.9 13.7 243 27.6 12.2 14.8 12.8 162
5.q; = ¢ NIGHTS 32.0 31.9 334 33.0 8.4 28.8 8.1 30.2
6. (gi.q0) — OVEN 39.2 34.7 352 387 34.4 37.1 34.6 38.0
SOAL ct InfoSeek 24.0 17.5 16.7 19.7 11.1 16.6 104 18.0
7 (gsa) = e FashionIQ 243 20.5 262 28.5 12.8 17.4 18.9 192
i Qe i CIRR 439 40.9 43.0 514 20.5 349 20.1 383
8. (g1 q0) = (cs.c)  OVEN 60.2 55.8 51.8 57.8 36.9 40.9 36.5 48.6
A9 Gt € ¢) InfoSeek 44.6 36.8 25.4 27.7 14.3 257 14.2 28.6
Average 48.9 433 427 455 28.1 354 28.8 383

Table 9. Universal Information Retrieval. Recall @5 for various tasks on the M-BEIR dataset, retrieved from a global pool across diverse
modalities. B represents the beam size, and R indicates re-ranking based on embedding vectors within the predicted candidate set.



gorizing items like dresses, trousers, and jackets based on
shared object types.

The third-level codes refine semantics by focusing on
attributes such as material, color, and patterns. Fig. 3 il-
lustrates these details. In COCQO, 3771 (i.e., a bunch of)
groups collections of items like stacked oranges, vegeta-
bles, or bananas, emphasizing grouping semantics. Simi-
larly, 1443 (i.e., green) identifies objects prominently fea-
turing green, such as train, fire hydrants, and bananas. In
Fashion200K, 1443 (i.e., green) also highlights garments
sharing the color green, while 1275 (i.e., striped clothing)
focuses on items with striped patterns, such as blazers and
trousers. Lastly, 3559 (i.e., velvet) captures items made of
velvet material, regardless of the type of clothing, showcas-
ing material-specific details.

The fourth-level codes capture highly fine-grained se-
mantics, such as specific actions, positions, and intricate
design features. Fig. 4 provides examples from COCO,
including 675 (i.e., leaning down), which groups scenes
featuring subjects leaning, such as giraffes eating grass or
people bending over. Similarly, 1412 (i.e., in-bedroom)
emphasizes indoor bedroom settings, capturing nuanced el-
ements beyond generic room scenes. Furthermore, 643
(i.e., carrying) captures actions involving carrying objects,
such as individuals carrying suitcases or animals transport-
ing items. In Fashion200K, codes like 190 (i.e., sleeve-
less style), 817 (i.e., biker style), and 826 (i.e., bomber
style) reflect fine-grained characteristics of garments, such
as sleeveless cuts, biker styles, or specific jacket designs.

While the examples showcase the first four levels, the
quantization process extends further to encode increas-
ingly fine details, enriching semantic representation. Al-
though these examples primarily showcase COCO and
Fashion200K data, the quantization framework is designed
to generalize across datasets. Shared semantics, such as
1443 (i.e., green) in second-level remain consistent across
different domains, highlighting the universal nature of the
code structure. This capability ensures consistent cap-
turing and alignment of similar semantics, irrespective of
the dataset. These properties enable the decoder in our
GENIUS framework to seamlessly map multimodal data
to their corresponding codes. As a result, by leverag-
ing this structured and interpretable quantization, GENIUS
achieves not only high retrieval performance but also en-
sures generalization across a wide range of tasks, spanning
various modalities and domains.
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Figure 2. Examples of second-level codes in the modality-decoupled semantic quantization. This level captures coarse semantics, such as
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primary objects or key scenes, with rows representing scenes from COCO and Fashion200K datasets.
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Figure 3. Examples of third-level codes in the modality-decoupled semantic quantization. This level captures finer semantic attributes,
such as object properties, material characteristics, or detailed patterns, across COCO and Fashion200K datasets.
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Figure 4. Examples of fourth-level codes in the modality-decoupled semantic quantization. This level captures highly fine-grained seman-
tics, such as specific actions, positions, nuanced object details, or intricate clothing features.
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