HOT: Hadamard-based Optimized Training

Supplementary Material

A. Overview

This supplementary material provides detailed configura-

tions of our experiments, ablation studies, visualization re-

sults, and pre-training experiments across various tasks and

datasets.

We provide the following items:

* Detailed hyper-parameters used in our experiments are
presented in Appendix B.

¢ Incremental ablation studies on ABC and LQS, the sub-
ordinate methods of HOT, are discussed in Appendix C.1.

* Ablation study on the number of low-pass ranks in HLA
is presented in Appendix C.2.

* Ablation study on the combination of HOT and LoRA is
detailed in Appendix C.3.

» Theoretical analysis of the computational overhead intro-
duced by HOT is provided in Appendix D.

» Experimental results of pre-training across various tasks
and datasets are presented in Appendix E.

* Implementation details of CUDA kernels and latency
breakdown are documented in Appendix F.

* Additional visualization results of gradient tensor outlier
patterns are presented in Appendix G.

B. Detailed Experimental Settings

In this section, we explain the detailed Hadamard Low-rank
Approximation (HLA) configuration of low-pass vector se-
lection and hyper-parameter setting for experiment of each
task. All experiments except pre-training are conducted for
fine-tuning task.

Hyper-paramemter of HLLA: We select top 8 low-pass
vectors (r = 8) based on L Py, criteria of LBP-WHTJ[16]
for our experiment. The ablation study of rank selection
is explained on Appendix C.2. The LPr; is a method
for selecting low-pass vectors that simultaneously reflect
the frequencies of both vertical and horizontal components
of the image. Unlike the conventional sequency order of
Hadamard matrix basis that only reflects horizontal com-
ponents, this approach can effectively filter low-frequency
components of image patches from both directions.

Hyper-parameter of experiments: For the classi-
fication tasks, we employed three different models:
EfficientNetV2[11], EfficientFormer[8], and Vision Trans-
former (ViT)[3]. EfficientNetV2 was trained with a batch
size of 64 and learning rate of 0.001, while both Effi-
cientFormer and ViT utilized a batch size of 128 and
learning rate of 0.00025. All models were trained for 50
epochs using the AdamW/[9] optimizer and cosine anneal-
ing scheduler[10], implemented via the Timm library[13].

Method Memory  Acceleration  Accuracy
HOT 17.48 2.3x% 93.2
HOT + ABC 3.8 2.3% 93.2
HOT + ABC + LQS 3.8 2.6 92.99

Table 1. Results of incremental ablation study for ViT-B fine-
tuning on CIFAR100. Memory represent theoretical calculations,
and Acceleration shows the averaged acceleration rates across all
layers of ViT-B.

For object detection, we implemented two approaches.
The Segformer-mit-b2[15] model from HuggingFace
Transformers[14] was trained with a learning rate of 6e-5
for 50 epochs. YOLO-V5[6], implemented using the official
repository, was trained for 40 epochs with a learning rate of
0.00334, using SGD optimizer and linear decay scheduling
with warmup.

The language model fine-tuning experiments involved
BERT-base and LLama3-8B[4]. BERT-base was trained us-
ing HuggingFace Transformers with a batch size of 32,
maximum sequence length of 128, and learning rate of 2e-5
for 5 epochs. LLama3-8B, used a smaller batch size of 2
with maximum sequence length of 1024, maintaining the
same learning rate for 4 epochs. Both models employed
AdamW optimizer and cosine annealing scheduler.

For pre-training, we experimented with ResNet[5], Ef-
ficientFormer, and ViT models. ResNet was trained using
SGD optimizer with a learning rate of 0.1 and MultiStepLR
scheduler for 200 epochs. EfficientFormer utilized AdamW
optimizer with a learning rate of 0.001 for 200 epochs,
while ViT was trained with a learning rate of 0.0001. Both
transformer-based models used cosine annealing scheduler.
All pre-training experiments maintained a 128 batch and
were implemented using the Timm library. During pre-
training, all quantization operators use INTS, including the
baseline, at the initial 25 epochs to ensure a stable start of
training. After the initial phase, the precision is modulated
to the target bit-width, and training continues.

C. Ablation Study

To investigate the impact of various components and hyper-
parameters of HOT on model performance, we conducted
comprehensive ablation studies.

C.1. Incremental evaluation on each component

We analyzed the effects of ABC and LQS in the g,, path of
HOT on model accuracy. The experiments were performed
by fine-tuning a ViT-B model on the CIFARI00 dataset



Selected vectors r Computation Cost Accuracy
16 (Full rank) 1647.48 76.35
8 1383.54 76.25
4 1251.56 73.09
2 1185.58 68.46
1 1152.59 47.28

HOT on HOT on Accuracy
Frozen weight Decomposed weight
X X 92.61
X v 57.96
v X 92.51
v v 58.68

Table 2. Ablation study of varying the number of low-pass vec-
tors (r) in HLA during pre-training of EfficientFormer-L1 on CI-
FAR100. The optimal r related with computation cost (Gbops) of
backward pass is 8.

with 50 epochs, measuring accuracy, memory consumption,
and computational speed while incrementally applying both
techniques. Here, Memory refers to theoretical calculations,
while Acceleration represents the average GPU acceleration
across ViT layers. Note that "HOT” in this experiment refers
to the baseline methodology without ABC and LQS.

The results in Table | demonstrate that the combination
of ABC and LQS effectively optimizes model performance.
Specifically, implementing ABC resulted in a significant re-
duction in memory usage from 17.48GB to 3.8GB, approx-
imately a 79% decrease. When LQS was additionally ap-
plied, the computational speed improved from 2.3 X to 2.6
while maintaining the reduced memory footprint. Notably,
despite these substantial efficiency improvements, the accu-
racy degradation was limited to merely 0.5%.

C.2. Rank selection of HLA

We investigated the impact of HLA rank selection on model
performance. The experiments were conducted by pre-
training EfficientFormer-L1 on the CIFAR100 dataset for
200 epochs, progressively decreasing the number of ranks
in powers of two while monitoring performance changes.

As referred to Tab. 2, utilizing 8 ranks in HLA pro-
vides optimal accuracy relative to rank reduction. Eight
low-frequency vectors appear to be sufficient to represent
the spatial information of gradient features. However, fur-
ther reduction below 4 ranks leads to gradual deterioration,
with a particularly sharp decline observed at 2 ranks. Based
on these results, we determined that the optimal number of
ranks for HLA in HOT implementation is 8.

C.3. LoRA application method

To determine the optimal strategy for combining HOT with
LoRA, we conducted ablation study focusing on frozen
weights and decomposed weights. The experiments were
conducted under the same conditions as the Appendix C.1,
analyzing four different configurations based on combina-
tions of HOT to these two weight types.

The results presented in Tab. 3 validate the effectiveness
of our proposed HOT-LoRA integration. The configuration

Table 3. Experimental results HOT-LoRA combination during
fine-tuning ViT-B on CIFAR100. HOT is applied to different com-
binations of LoRA weight types (Frozen, Decomposed).

applying HOT exclusively to frozen weights achieved the
highest accuracy of 92.51% among all tested combinations.
In contrast, configurations that applied HOT solely to de-
composed or to both decomposed and frozen weights shows
significant performance degradation. These findings exper-
imentally demonstrate that direct training of decomposed
weights plays a crucial role in model performance.

D. Overhead Calculation

To analyze the computational overhead of HOT, we adopt
a standardized notation for layer dimensions. Each layer is
represented as a tuple (L, O, I), where L denotes the spatial
dimension size, O represents the output channel size, and
I indicates the input channel size. For instance, in a layer
denoted as (128, 64, 256), the spatial dimension is 128, with
64 output channels and 256 input channels.

The additional transformation, reshaping, and quantiza-
tion/dequantization processes introduce some overhead to
HOT compared to the vanila BP. However, by leveraging
low-precision arithmetic, we can achieve practical perfor-
mance benefits. In this section, we present three tables to
explain the computational benefits of our approach in de-
tail.

The added overhead of HOT can be negligible, as shown
in Table 5, especially when logn is sufficiently small rel-
ative to other dimensions. In our work, we use n = 16
for applying order-4 block-diagonal HT, making this condi-
tion valid. For example, in the ’stages.3.fc2’ (49, 448, 1792)
layer of EfficientFormer-L1, vanilla BP requires 137.3
MFlops, whereas our method only requires 11.5 MFlops.
Although HOT incurs some additional overhead, it can
achieve significant computational cost reduction through ef-
ficient low-precision arithmetic.

E. Pre-training result on various models

In this section, we present additional experimental results
on pre-training task, evaluated across various architectures
and datasets. As shown in Table 4, HOT consistently outper-
forms naive INT4 training and previous methods in almost
all scenarios, following trend of fine-tuning result.



Dataset Model FP INT4 LUQ [1] LBP-WHT [16] HOT
ResNet-18 [5] 95.23 93.1 94.73 93.03 94.77
ResNet-34 [5] 95.23 93.57 94.74 93.59 93.83
CIFARI10 [7] ResNet-50 [5] 94.98 90.65 93.62 92.12 92.85
EfficientFormer-L1 [8] 95.03 92.9 94.1 91.07 94.01
EfficientFormer-L3 [8] 95.18 93.8 94.63 91.18 95.01
ResNet-18 [5] 75.66 75.22 75.63 72.26 75.53
ResNet-34 [5] 76.75 72.87 76.26 75.36 76.95
CIFAR100 [7] ResNet-50 [5] 76.46 61.28 NaN 69.24 76.06
EfficientFormer-L1 [§] 76.65 64.15 75.79 73.69 76.06
EfficientFormer-L3 [8] 77.26 66.93 76.19 63.04 76.19
ResNet-18 [5] 86.77 NaN 82.77 82.31 86.26
ResNet-34 [5] 86.87 NaN 82.6 83.31 86.7
ResNet- 5 51 N 1.4 . 5.2
ImageNet-100 [2] . esNet-50 [5] 85.5 aN 81.45 69.98 8
EfficientFormer-L1 [8] 83.38 81.3 82.46 77.52 83.05
EfficientFormer-L3 [8] 83.3 78.09 83.13 78.1 83.01
ViT-B [3] 77.87 NaN 75.97 54.25 77.31
ImageNet-1k [2] ViT-B [3] 70.01 NaN 67.1 NaN 69.4

Table 4. Accuracy results for pre-training tasks. In ImageNet training, while other efficiency methods either show substantial degradation
(LUQ [1]) or fail to train (LBP-WHT [16]), HOT achieves performance nearly equivalent to FP.

HOT surpasses LBP-WHT [16] in all cases, highlight-
ing the importance of proper optimization of each gradi-
ent paths. LUQ [1] achieves competitive performance on
the CIFAR10 dataset [7], but it occasionally fails to train
or exhibits significantly degraded results on more complex
datasets, such as CIFAR100 [7] and ImageNet [2].

Notably, HOT is the only approach that provides sta-
ble training while achieving performance comparable to FP
training. The extensive pre-training results demonstrate that
HOT is a robust and comprehensive solution, applicable not
only to fine-tuning but also to pre-trainig tasks.

F. Details of CUDA Kkernel

Implementation: This section details the implementation
of CUDA kernels in HOT. The CUDA kernels consist of five
core modules: Hadamard transformation(HT), Hadamard
Low-rank Approximation(HLA), Quantization, INT4 and
INTS8 matrix multiplication, and Dequantization.

The HT and HLA kernel, which inherently has an effi-
cient computational complexity of O(nlogn) with FWHT
algorithm, is optimized to maximize computational effi-
ciency by extensively utilizing shared memory of GPU to
minimize memory access latency. FWHT is employed not
only for HT but also for HLA, where vectors corresponding
to low-pass vector indices selected based on the L Py cri-
terion are extracted from FWHT outputs and concatenated
into a single tensor.

The Quantization module implements pseudo-stochastic

quantization[12], ensuring unbiased estimation while mini-
mizing quantization overhead.

Both INT4 and INT8 matrix multiplication are imple-
mented using the NVIDIA CUTLASS framework. Un-
like CUBLAS, which is closed-source, CUTLASS is open-
source and provides extensive customization options for
matrix operation configurations, enabling the implementa-
tion of optimized matrix multiplication with high through-
put. Specifically, to address PyTorch’s lack of native INT4
data type support, we efficiently compressed tensors by
packing two INT4 values adjacently within an INTS.

Finally, for the Dequantization stage, which requires ma-
trix multiplication in FP32 format, we utilized NVIDIA
CUBLAS through PyTorch’s default matrix multiplication
implementation.

Latency breakdown: In this section, we conduct a de-
tailed latency analysis of five core modules in CUDA ker-
nels to understand the specific mechanisms of computa-
tional acceleration. Fig. | presents a comparative analysis
of latencies across FP operations, LBP-WHT, and HOT ker-
nels for representative layers showing average acceleration
in ResNet-50, ViT-B, and EfficientFormer-L7 architectures.
Specifically, HOT achieved 1.9x acceleration in ResNet-
50’s ’layerd.conv2’ (49, 512, 4608), 2.6 acceleration in
ViT-B’s ’qkv’ (197, 2304, 768), and 1.9 acceleration in
EfficientFormer-L7’s ’stages.1.fc1’ (784, 768, 192).

The experimental results demonstrate that integer ma-
trix multiplication significantly reduced the latency com-
pared to FP32 across all target models. A noteworthy case
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Figure 1. Comparison of kernel latency (us) between FP32, LBP-
WHT, and HOT for representative layers of ResNet-50, ViT-B, and
EfficientFormer-L7 models. The selected representative layers can
be found in the 'Latency breakdown’ section of Appendix F.

is observed in the ViT-B model, where FP32 matrix mul-
tiplication shows 182us, while integer matrix multiplica-
tion consumes only 25us. This substantial performance im-
provement can be attributed to the synergistic effect of low-
precision integer matrix multiplication combined with ten-
sor size reduction through HLA.

Meanwhile, the HT and HLA modules in ViT-B show la-
tencies of 185 and 11 s respectively, resulting in approx-
imately 16% computational overhead compared to FP op-
erations. This figure exceeds the theoretical overhead pre-
diction of 7% calculated in Appendix D. This discrepancy
can be attributed to additional operations required in prac-
tical implementation beyond FWHT algorithm operations,
including transpose, reshape, and contiguous operations.
Consequently, we anticipate potential further latency reduc-
tions through the optimization techniques such as kernel
fusing.

G. Various case of output gradient tensor

We visualized two distinctive outlier patterns of output
gradient g, that form the theoretical baseline of LQS,
extending our analysis to various layers within ViT-S
and ResNet34. Fig. 2 presents 3D visualizations from
ImageNet-1k training with LQS, categorized layers into (a)
per-token quantization friendly and (b) per-tensor quantiza-
tion friendly case.

The analysis revealed distinct pattern across models. In
ViT-S, fc2 layers and attention projection layers consis-
tently exhibited token-wise gradient outliers, demonstrating
it is suited for per-token quantization. Similarly, convl lay-
ers across different stages in ResNet-34 displayed non-zero
gradient value at the token level, indicating the effectiveness
of per-token quantization for these layers.

Conversely, some layers exhibited contrasting character-
istics. In the case of ViT-S’s fcl layers, there was a sig-
nificant reduction in the magnitude of token-level non-zero
gradients compared to fc2 layers, with notably sparse occur-

Name FLOPs

Vanilla BP 4LIO
gz 2LOlogn + 2I0logn + 2LO + 210

Jw 2LIlogn + 2LOlogn + 2I(L * ) +20(L * 1)
Dequant 210 +2L1

Table 5. The additional FLOPs induced by optimization path.

rence patterns, suggesting limited effectiveness of per-token
quantization. Certain convl and conv2 layers in ResNet-34
showed large non-zero gradients at irregular positions inde-
pendent of token locations, indicating limited advantages in
terms of quantization error when applying per-token quan-
tization.

These analysis results empirically demonstrate the ne-
cessity for different quantization strategies based on layer
characteristics, suggesting that LQS represents an opti-
mized approach that considers characteristics of each layer.
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Figure 2. The illustration for output gradient of (a) Per-token quantization friendly case and (b) Per-tensor quantization friendly case
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